Cargando…

Dynamic and Ballistic Performance of Graphene Oxide Functionalized Curaua Fiber-Reinforced Epoxy Nanocomposites

Graphene oxide (GO) functionalized curaua fiber (CF) has been shown to improve the mechanical properties and ballistic performance of epoxy matrix (EM) nanocomposites with 30 vol% fiber. However, the possibility of further improvement in the property and performance of nanocomposites with a greater...

Descripción completa

Detalles Bibliográficos
Autores principales: Costa, Ulisses Oliveira, Nascimento, Lucio Fabio Cassiano, Bezerra, Wendell Bruno Almeida, Neves, Pamela Pinto, Huaman, Noemi Raquel Checca, Monteiro, Sergio Neves, Pinheiro, Wagner Anacleto
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9105903/
https://www.ncbi.nlm.nih.gov/pubmed/35567028
http://dx.doi.org/10.3390/polym14091859
Descripción
Sumario:Graphene oxide (GO) functionalized curaua fiber (CF) has been shown to improve the mechanical properties and ballistic performance of epoxy matrix (EM) nanocomposites with 30 vol% fiber. However, the possibility of further improvement in the property and performance of nanocomposites with a greater percentage of GO functionalized CF is still a challenging endeavor. In the present work, a novel epoxy composite reinforced with 40 vol% CF coated with 0.1 wt% GO (40GOCF/EM), was subjected to Izod and ballistic impact tests as well as corresponding fractographic analysis in comparison with a GO-free composite (40CF/EM). One important achievement of this work was to determine the characteristics of the GO by means of FE-SEM and TEM. A zeta potential of −21.46 mV disclosed a relatively low stability of the applied GO, which was attributed to more multilayered structures rather than mono- or few-layer flakes. FE-SEM images revealed GO deposition, with thickness around 30 nm, onto the CF. Izod impact-absorbed energy of 813 J/m for the 40GOCF/EM was not only higher than that of 620 J/m for the 40CF/EM but also higher than other values reported for fiber composites in the literature. The GO-functionalized nanocomposite was more optimized for ballistic application against a 7.62 mm projectile, with a lower depth of penetration (24.80 mm) as compared with the 30 vol% GO-functionalized CF/epoxy nanocomposite previously reported (27.43 mm). Fractographic analysis identified five main events in the ballistic-tested 40GOCF/EM composed of multilayered armor: CF rupture, epoxy matrix rupture, CF/matrix delamination, CF fibril split, and capture of ceramic fragments by the CF. Microcracks were associated with the morphological aspects of the CF surface. A brief cost-effective analysis confirmed that 40GOCF/EM may be one of the most promising materials for personal multilayered ballistic armor.