Cargando…

Novel Receive Antenna Selection Scheme for Precoding-Aided Spatial Modulation with Lattice Reduction

In this paper, a new receive antenna subset (RAS) selection scheme is proposed for precoding-aided spatial modulation (PSM). First, a lattice reduction (LR)-based precoder is employed instead of a conventional zero-forcing (ZF) precoder. It is analytically shown that a full diversity gain can be ach...

Descripción completa

Detalles Bibliográficos
Autor principal: Kim, Sangchoon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9105946/
https://www.ncbi.nlm.nih.gov/pubmed/35591262
http://dx.doi.org/10.3390/s22093575
Descripción
Sumario:In this paper, a new receive antenna subset (RAS) selection scheme is proposed for precoding-aided spatial modulation (PSM). First, a lattice reduction (LR)-based precoder is employed instead of a conventional zero-forcing (ZF) precoder. It is analytically shown that a full diversity gain can be achieved by the LR-based ZF precoder without RAS selection. Then, an optimal LR-based RAS selection criterion is derived for the over-determined LR-based PSM systems, and a suboptimal selection algorithm is additionally presented. It is also shown that optimal and suboptimal RAS selection algorithms based on LR improve the BER performance of the LR-based PSM system. Further, the overall diversity order of the over-determined LR-based PSM systems with optimal LR-based RAS selection is analyzed. Finally, diversity analysis and simulation results show that the LR-ZF-based PSM system with optimal LR-based RAS selection outperforms the conventional ZF-based PSM system with conventional optimal RAS selection.