Cargando…
Modeling and Predicting Pulmonary Tuberculosis Incidence and Its Association with Air Pollution and Meteorological Factors Using an ARIMAX Model: An Ecological Study in Ningbo of China
The autoregressive integrated moving average with exogenous regressors (ARIMAX) modeling studies of pulmonary tuberculosis (PTB) are still rare. This study aims to explore whether incorporating air pollution and meteorological factors can improve the performance of a time series model in predicting...
Autores principales: | Chen, Yun-Peng, Liu, Le-Fan, Che, Yang, Huang, Jing, Li, Guo-Xing, Sang, Guo-Xin, Xuan, Zhi-Qiang, He, Tian-Feng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9105987/ https://www.ncbi.nlm.nih.gov/pubmed/35564780 http://dx.doi.org/10.3390/ijerph19095385 |
Ejemplares similares
-
Predicting pulmonary tuberculosis incidence in China using Baidu search index: an ARIMAX model approach
por: Yang, Jing, et al.
Publicado: (2023) -
Machine Learning Prediction Model of Tuberculosis Incidence Based on Meteorological Factors and Air Pollutants
por: Tang, Na, et al.
Publicado: (2023) -
Knowledge and perceptions of air pollution in Ningbo, China
por: Qian, Xujun, et al.
Publicado: (2016) -
Comparison of ARIMA and LSTM in Forecasting the Incidence of HFMD Combined and Uncombined with Exogenous Meteorological Variables in Ningbo, China
por: Zhang, Rui, et al.
Publicado: (2021) -
Ambient air pollution and years of life lost in Ningbo, China
por: He, Tianfeng, et al.
Publicado: (2016)