Cargando…
Rough set based information theoretic approach for clustering uncertain categorical data
MOTIVATION: Many real applications such as businesses and health generate large categorical datasets with uncertainty. A fundamental task is to efficiently discover hidden and non-trivial patterns from such large uncertain categorical datasets. Since the exact value of an attribute is often unknown...
Autores principales: | Uddin, Jamal, Ghazali, Rozaida, H. Abawajy, Jemal, Shah, Habib, Husaini, Noor Aida, Zeb, Asim |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9106167/ https://www.ncbi.nlm.nih.gov/pubmed/35559954 http://dx.doi.org/10.1371/journal.pone.0265190 |
Ejemplares similares
-
An Empirical Analysis of Rough Set Categorical Clustering Techniques
por: Uddin, Jamal, et al.
Publicado: (2017) -
Recent advances on soft computing and data mining: proceedings of the fourth international conference on soft computing and data mining (SCDM 2020), Melaka, Malaysia, January 22-23 2020
por: Ghazali, Rozaida, et al.
Publicado: (2019) -
Study on the Pakistan stock market using a new stock crisis prediction method
por: Javid, Irfan, et al.
Publicado: (2022) -
A rough set based algorithm for updating the modes in categorical clustering
por: Salem, Semeh Ben, et al.
Publicado: (2021) -
A comparative analysis on question classification task based on deep learning approaches
por: Zulqarnain, Muhammad, et al.
Publicado: (2021)