Cargando…
Deep neural networks to recover unknown physical parameters from oscillating time series
Deep neural networks are widely used in pattern-recognition tasks for which a human-comprehensible, quantitative description of the data-generating process, cannot be obtained. While doing so, neural networks often produce an abstract (entangled and non-interpretable) representation of the data-gene...
Autores principales: | Garcon, Antoine, Vexler, Julian, Budker, Dmitry, Kramer, Stefan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9106171/ https://www.ncbi.nlm.nih.gov/pubmed/35560322 http://dx.doi.org/10.1371/journal.pone.0268439 |
Ejemplares similares
-
Physics applications of gamma-factories
por: BUDKER, DMITRY
Publicado: (2020) -
The Unknown Unknowns: Recovering Gamma-Delta T Cells for Control of Human Immunodeficiency Virus (HIV)
por: Biradar, Shivkumar, et al.
Publicado: (2020) -
Physics-informed neural networks for predicting gas flow dynamics and unknown parameters in diesel engines
por: Nath, Kamaljyoti, et al.
Publicado: (2023) -
Visual predictions, neural oscillations and naïve physics
por: Saurels, Blake W., et al.
Publicado: (2021) -
Chemical Reaction Monitoring using Zero‐Field Nuclear Magnetic Resonance Enables Study of Heterogeneous Samples in Metal Containers
por: Burueva, Dudari B., et al.
Publicado: (2020)