Cargando…

High-performance superconducting quantum processors via laser annealing of transmon qubits

Scaling the number of qubits while maintaining high-fidelity quantum gates remains a key challenge for quantum computing. Presently, superconducting quantum processors with >50 qubits are actively available. For these systems, fixed-frequency transmons are attractive because of their long coheren...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Eric J., Srinivasan, Srikanth, Sundaresan, Neereja, Bogorin, Daniela F., Martin, Yves, Hertzberg, Jared B., Timmerwilke, John, Pritchett, Emily J., Yau, Jeng-Bang, Wang, Cindy, Landers, William, Lewandowski, Eric P., Narasgond, Adinath, Rosenblatt, Sami, Keefe, George A., Lauer, Isaac, Rothwell, Mary Beth, McClure, Douglas T., Dial, Oliver E., Orcutt, Jason S., Brink, Markus, Chow, Jerry M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9106287/
https://www.ncbi.nlm.nih.gov/pubmed/35559683
http://dx.doi.org/10.1126/sciadv.abi6690
_version_ 1784708248184553472
author Zhang, Eric J.
Srinivasan, Srikanth
Sundaresan, Neereja
Bogorin, Daniela F.
Martin, Yves
Hertzberg, Jared B.
Timmerwilke, John
Pritchett, Emily J.
Yau, Jeng-Bang
Wang, Cindy
Landers, William
Lewandowski, Eric P.
Narasgond, Adinath
Rosenblatt, Sami
Keefe, George A.
Lauer, Isaac
Rothwell, Mary Beth
McClure, Douglas T.
Dial, Oliver E.
Orcutt, Jason S.
Brink, Markus
Chow, Jerry M.
author_facet Zhang, Eric J.
Srinivasan, Srikanth
Sundaresan, Neereja
Bogorin, Daniela F.
Martin, Yves
Hertzberg, Jared B.
Timmerwilke, John
Pritchett, Emily J.
Yau, Jeng-Bang
Wang, Cindy
Landers, William
Lewandowski, Eric P.
Narasgond, Adinath
Rosenblatt, Sami
Keefe, George A.
Lauer, Isaac
Rothwell, Mary Beth
McClure, Douglas T.
Dial, Oliver E.
Orcutt, Jason S.
Brink, Markus
Chow, Jerry M.
author_sort Zhang, Eric J.
collection PubMed
description Scaling the number of qubits while maintaining high-fidelity quantum gates remains a key challenge for quantum computing. Presently, superconducting quantum processors with >50 qubits are actively available. For these systems, fixed-frequency transmons are attractive because of their long coherence and noise immunity. However, scaling fixed-frequency architectures proves challenging because of precise relative frequency requirements. Here, we use laser annealing to selectively tune transmon qubits into desired frequency patterns. Statistics over hundreds of annealed qubits demonstrate an empirical tuning precision of 18.5 MHz, with no measurable impact on qubit coherence. We quantify gate error statistics on a tuned 65-qubit processor, with median two-qubit gate fidelity of 98.7%. Baseline tuning statistics yield a frequency-equivalent resistance precision of 4.7 MHz, sufficient for high-yield scaling beyond 10(3) qubit levels. Moving forward, we anticipate selective laser annealing to play a central role in scaling fixed-frequency architectures.
format Online
Article
Text
id pubmed-9106287
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-91062872022-05-26 High-performance superconducting quantum processors via laser annealing of transmon qubits Zhang, Eric J. Srinivasan, Srikanth Sundaresan, Neereja Bogorin, Daniela F. Martin, Yves Hertzberg, Jared B. Timmerwilke, John Pritchett, Emily J. Yau, Jeng-Bang Wang, Cindy Landers, William Lewandowski, Eric P. Narasgond, Adinath Rosenblatt, Sami Keefe, George A. Lauer, Isaac Rothwell, Mary Beth McClure, Douglas T. Dial, Oliver E. Orcutt, Jason S. Brink, Markus Chow, Jerry M. Sci Adv Physical and Materials Sciences Scaling the number of qubits while maintaining high-fidelity quantum gates remains a key challenge for quantum computing. Presently, superconducting quantum processors with >50 qubits are actively available. For these systems, fixed-frequency transmons are attractive because of their long coherence and noise immunity. However, scaling fixed-frequency architectures proves challenging because of precise relative frequency requirements. Here, we use laser annealing to selectively tune transmon qubits into desired frequency patterns. Statistics over hundreds of annealed qubits demonstrate an empirical tuning precision of 18.5 MHz, with no measurable impact on qubit coherence. We quantify gate error statistics on a tuned 65-qubit processor, with median two-qubit gate fidelity of 98.7%. Baseline tuning statistics yield a frequency-equivalent resistance precision of 4.7 MHz, sufficient for high-yield scaling beyond 10(3) qubit levels. Moving forward, we anticipate selective laser annealing to play a central role in scaling fixed-frequency architectures. American Association for the Advancement of Science 2022-05-13 /pmc/articles/PMC9106287/ /pubmed/35559683 http://dx.doi.org/10.1126/sciadv.abi6690 Text en Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution license (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Physical and Materials Sciences
Zhang, Eric J.
Srinivasan, Srikanth
Sundaresan, Neereja
Bogorin, Daniela F.
Martin, Yves
Hertzberg, Jared B.
Timmerwilke, John
Pritchett, Emily J.
Yau, Jeng-Bang
Wang, Cindy
Landers, William
Lewandowski, Eric P.
Narasgond, Adinath
Rosenblatt, Sami
Keefe, George A.
Lauer, Isaac
Rothwell, Mary Beth
McClure, Douglas T.
Dial, Oliver E.
Orcutt, Jason S.
Brink, Markus
Chow, Jerry M.
High-performance superconducting quantum processors via laser annealing of transmon qubits
title High-performance superconducting quantum processors via laser annealing of transmon qubits
title_full High-performance superconducting quantum processors via laser annealing of transmon qubits
title_fullStr High-performance superconducting quantum processors via laser annealing of transmon qubits
title_full_unstemmed High-performance superconducting quantum processors via laser annealing of transmon qubits
title_short High-performance superconducting quantum processors via laser annealing of transmon qubits
title_sort high-performance superconducting quantum processors via laser annealing of transmon qubits
topic Physical and Materials Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9106287/
https://www.ncbi.nlm.nih.gov/pubmed/35559683
http://dx.doi.org/10.1126/sciadv.abi6690
work_keys_str_mv AT zhangericj highperformancesuperconductingquantumprocessorsvialaserannealingoftransmonqubits
AT srinivasansrikanth highperformancesuperconductingquantumprocessorsvialaserannealingoftransmonqubits
AT sundaresanneereja highperformancesuperconductingquantumprocessorsvialaserannealingoftransmonqubits
AT bogorindanielaf highperformancesuperconductingquantumprocessorsvialaserannealingoftransmonqubits
AT martinyves highperformancesuperconductingquantumprocessorsvialaserannealingoftransmonqubits
AT hertzbergjaredb highperformancesuperconductingquantumprocessorsvialaserannealingoftransmonqubits
AT timmerwilkejohn highperformancesuperconductingquantumprocessorsvialaserannealingoftransmonqubits
AT pritchettemilyj highperformancesuperconductingquantumprocessorsvialaserannealingoftransmonqubits
AT yaujengbang highperformancesuperconductingquantumprocessorsvialaserannealingoftransmonqubits
AT wangcindy highperformancesuperconductingquantumprocessorsvialaserannealingoftransmonqubits
AT landerswilliam highperformancesuperconductingquantumprocessorsvialaserannealingoftransmonqubits
AT lewandowskiericp highperformancesuperconductingquantumprocessorsvialaserannealingoftransmonqubits
AT narasgondadinath highperformancesuperconductingquantumprocessorsvialaserannealingoftransmonqubits
AT rosenblattsami highperformancesuperconductingquantumprocessorsvialaserannealingoftransmonqubits
AT keefegeorgea highperformancesuperconductingquantumprocessorsvialaserannealingoftransmonqubits
AT lauerisaac highperformancesuperconductingquantumprocessorsvialaserannealingoftransmonqubits
AT rothwellmarybeth highperformancesuperconductingquantumprocessorsvialaserannealingoftransmonqubits
AT mccluredouglast highperformancesuperconductingquantumprocessorsvialaserannealingoftransmonqubits
AT dialolivere highperformancesuperconductingquantumprocessorsvialaserannealingoftransmonqubits
AT orcuttjasons highperformancesuperconductingquantumprocessorsvialaserannealingoftransmonqubits
AT brinkmarkus highperformancesuperconductingquantumprocessorsvialaserannealingoftransmonqubits
AT chowjerrym highperformancesuperconductingquantumprocessorsvialaserannealingoftransmonqubits