Cargando…
High-performance superconducting quantum processors via laser annealing of transmon qubits
Scaling the number of qubits while maintaining high-fidelity quantum gates remains a key challenge for quantum computing. Presently, superconducting quantum processors with >50 qubits are actively available. For these systems, fixed-frequency transmons are attractive because of their long coheren...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9106287/ https://www.ncbi.nlm.nih.gov/pubmed/35559683 http://dx.doi.org/10.1126/sciadv.abi6690 |
_version_ | 1784708248184553472 |
---|---|
author | Zhang, Eric J. Srinivasan, Srikanth Sundaresan, Neereja Bogorin, Daniela F. Martin, Yves Hertzberg, Jared B. Timmerwilke, John Pritchett, Emily J. Yau, Jeng-Bang Wang, Cindy Landers, William Lewandowski, Eric P. Narasgond, Adinath Rosenblatt, Sami Keefe, George A. Lauer, Isaac Rothwell, Mary Beth McClure, Douglas T. Dial, Oliver E. Orcutt, Jason S. Brink, Markus Chow, Jerry M. |
author_facet | Zhang, Eric J. Srinivasan, Srikanth Sundaresan, Neereja Bogorin, Daniela F. Martin, Yves Hertzberg, Jared B. Timmerwilke, John Pritchett, Emily J. Yau, Jeng-Bang Wang, Cindy Landers, William Lewandowski, Eric P. Narasgond, Adinath Rosenblatt, Sami Keefe, George A. Lauer, Isaac Rothwell, Mary Beth McClure, Douglas T. Dial, Oliver E. Orcutt, Jason S. Brink, Markus Chow, Jerry M. |
author_sort | Zhang, Eric J. |
collection | PubMed |
description | Scaling the number of qubits while maintaining high-fidelity quantum gates remains a key challenge for quantum computing. Presently, superconducting quantum processors with >50 qubits are actively available. For these systems, fixed-frequency transmons are attractive because of their long coherence and noise immunity. However, scaling fixed-frequency architectures proves challenging because of precise relative frequency requirements. Here, we use laser annealing to selectively tune transmon qubits into desired frequency patterns. Statistics over hundreds of annealed qubits demonstrate an empirical tuning precision of 18.5 MHz, with no measurable impact on qubit coherence. We quantify gate error statistics on a tuned 65-qubit processor, with median two-qubit gate fidelity of 98.7%. Baseline tuning statistics yield a frequency-equivalent resistance precision of 4.7 MHz, sufficient for high-yield scaling beyond 10(3) qubit levels. Moving forward, we anticipate selective laser annealing to play a central role in scaling fixed-frequency architectures. |
format | Online Article Text |
id | pubmed-9106287 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Association for the Advancement of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-91062872022-05-26 High-performance superconducting quantum processors via laser annealing of transmon qubits Zhang, Eric J. Srinivasan, Srikanth Sundaresan, Neereja Bogorin, Daniela F. Martin, Yves Hertzberg, Jared B. Timmerwilke, John Pritchett, Emily J. Yau, Jeng-Bang Wang, Cindy Landers, William Lewandowski, Eric P. Narasgond, Adinath Rosenblatt, Sami Keefe, George A. Lauer, Isaac Rothwell, Mary Beth McClure, Douglas T. Dial, Oliver E. Orcutt, Jason S. Brink, Markus Chow, Jerry M. Sci Adv Physical and Materials Sciences Scaling the number of qubits while maintaining high-fidelity quantum gates remains a key challenge for quantum computing. Presently, superconducting quantum processors with >50 qubits are actively available. For these systems, fixed-frequency transmons are attractive because of their long coherence and noise immunity. However, scaling fixed-frequency architectures proves challenging because of precise relative frequency requirements. Here, we use laser annealing to selectively tune transmon qubits into desired frequency patterns. Statistics over hundreds of annealed qubits demonstrate an empirical tuning precision of 18.5 MHz, with no measurable impact on qubit coherence. We quantify gate error statistics on a tuned 65-qubit processor, with median two-qubit gate fidelity of 98.7%. Baseline tuning statistics yield a frequency-equivalent resistance precision of 4.7 MHz, sufficient for high-yield scaling beyond 10(3) qubit levels. Moving forward, we anticipate selective laser annealing to play a central role in scaling fixed-frequency architectures. American Association for the Advancement of Science 2022-05-13 /pmc/articles/PMC9106287/ /pubmed/35559683 http://dx.doi.org/10.1126/sciadv.abi6690 Text en Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution license (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Physical and Materials Sciences Zhang, Eric J. Srinivasan, Srikanth Sundaresan, Neereja Bogorin, Daniela F. Martin, Yves Hertzberg, Jared B. Timmerwilke, John Pritchett, Emily J. Yau, Jeng-Bang Wang, Cindy Landers, William Lewandowski, Eric P. Narasgond, Adinath Rosenblatt, Sami Keefe, George A. Lauer, Isaac Rothwell, Mary Beth McClure, Douglas T. Dial, Oliver E. Orcutt, Jason S. Brink, Markus Chow, Jerry M. High-performance superconducting quantum processors via laser annealing of transmon qubits |
title | High-performance superconducting quantum processors via laser annealing of transmon qubits |
title_full | High-performance superconducting quantum processors via laser annealing of transmon qubits |
title_fullStr | High-performance superconducting quantum processors via laser annealing of transmon qubits |
title_full_unstemmed | High-performance superconducting quantum processors via laser annealing of transmon qubits |
title_short | High-performance superconducting quantum processors via laser annealing of transmon qubits |
title_sort | high-performance superconducting quantum processors via laser annealing of transmon qubits |
topic | Physical and Materials Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9106287/ https://www.ncbi.nlm.nih.gov/pubmed/35559683 http://dx.doi.org/10.1126/sciadv.abi6690 |
work_keys_str_mv | AT zhangericj highperformancesuperconductingquantumprocessorsvialaserannealingoftransmonqubits AT srinivasansrikanth highperformancesuperconductingquantumprocessorsvialaserannealingoftransmonqubits AT sundaresanneereja highperformancesuperconductingquantumprocessorsvialaserannealingoftransmonqubits AT bogorindanielaf highperformancesuperconductingquantumprocessorsvialaserannealingoftransmonqubits AT martinyves highperformancesuperconductingquantumprocessorsvialaserannealingoftransmonqubits AT hertzbergjaredb highperformancesuperconductingquantumprocessorsvialaserannealingoftransmonqubits AT timmerwilkejohn highperformancesuperconductingquantumprocessorsvialaserannealingoftransmonqubits AT pritchettemilyj highperformancesuperconductingquantumprocessorsvialaserannealingoftransmonqubits AT yaujengbang highperformancesuperconductingquantumprocessorsvialaserannealingoftransmonqubits AT wangcindy highperformancesuperconductingquantumprocessorsvialaserannealingoftransmonqubits AT landerswilliam highperformancesuperconductingquantumprocessorsvialaserannealingoftransmonqubits AT lewandowskiericp highperformancesuperconductingquantumprocessorsvialaserannealingoftransmonqubits AT narasgondadinath highperformancesuperconductingquantumprocessorsvialaserannealingoftransmonqubits AT rosenblattsami highperformancesuperconductingquantumprocessorsvialaserannealingoftransmonqubits AT keefegeorgea highperformancesuperconductingquantumprocessorsvialaserannealingoftransmonqubits AT lauerisaac highperformancesuperconductingquantumprocessorsvialaserannealingoftransmonqubits AT rothwellmarybeth highperformancesuperconductingquantumprocessorsvialaserannealingoftransmonqubits AT mccluredouglast highperformancesuperconductingquantumprocessorsvialaserannealingoftransmonqubits AT dialolivere highperformancesuperconductingquantumprocessorsvialaserannealingoftransmonqubits AT orcuttjasons highperformancesuperconductingquantumprocessorsvialaserannealingoftransmonqubits AT brinkmarkus highperformancesuperconductingquantumprocessorsvialaserannealingoftransmonqubits AT chowjerrym highperformancesuperconductingquantumprocessorsvialaserannealingoftransmonqubits |