Cargando…
RLAS-BIABC: A Reinforcement Learning-Based Answer Selection Using the BERT Model Boosted by an Improved ABC Algorithm
Answer selection (AS) is a critical subtask of the open-domain question answering (QA) problem. The present paper proposes a method called RLAS-BIABC for AS, which is established on attention mechanism-based long short-term memory (LSTM) and the bidirectional encoder representations from transformer...
Autores principales: | Gharagozlou, Hamid, Mohammadzadeh, Javad, Bastanfard, Azam, Ghidary, Saeed Shiry |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9106472/ https://www.ncbi.nlm.nih.gov/pubmed/35571722 http://dx.doi.org/10.1155/2022/7839840 |
Ejemplares similares
-
200MHz Superconducting RF Cavity Development for RLAs
por: Geng, R L, et al.
Publicado: (2003) -
Bert for Question Answering applied on Covid-19
por: Widad, Awane, et al.
Publicado: (2022) -
Development and validation of a students’ remote learning attitude scale (RLAS) in higher education
por: Tzafilkou, Katerina, et al.
Publicado: (2021) -
Investigating Query Expansion and Coreference Resolution in Question Answering on BERT
por: Bhattacharjee, Santanu, et al.
Publicado: (2020) -
COBERT: COVID-19 Question Answering System Using BERT
por: Alzubi, Jafar A., et al.
Publicado: (2021)