Cargando…
An External-Validated Prediction Model to Predict Lung Metastasis among Osteosarcoma: A Multicenter Analysis Based on Machine Learning
BACKGROUND: Lung metastasis greatly affects medical therapeutic strategies in osteosarcoma. This study aimed to develop and validate a clinical prediction model to predict the risk of lung metastasis among osteosarcoma patients based on machine learning (ML) algorithms. METHODS: We retrospectively c...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9106476/ https://www.ncbi.nlm.nih.gov/pubmed/35571720 http://dx.doi.org/10.1155/2022/2220527 |
_version_ | 1784708293829066752 |
---|---|
author | Li, Wenle Liu, Wencai Hussain Memon, Fida Wang, Bing Xu, Chan Dong, Shengtao Wang, Haosheng Hu, Zhaohui Quan, Xubin Deng, Yizhuo Liu, Qiang Su, Shibin Yin, Chengliang |
author_facet | Li, Wenle Liu, Wencai Hussain Memon, Fida Wang, Bing Xu, Chan Dong, Shengtao Wang, Haosheng Hu, Zhaohui Quan, Xubin Deng, Yizhuo Liu, Qiang Su, Shibin Yin, Chengliang |
author_sort | Li, Wenle |
collection | PubMed |
description | BACKGROUND: Lung metastasis greatly affects medical therapeutic strategies in osteosarcoma. This study aimed to develop and validate a clinical prediction model to predict the risk of lung metastasis among osteosarcoma patients based on machine learning (ML) algorithms. METHODS: We retrospectively collected osteosarcoma patients from the Surveillance Epidemiology and End Results (SEER) database and from four hospitals in China. Six ML algorithms, including logistic regression (LR), gradient boosting machine (GBM), extreme gradient boosting (XGBoost), random forest (RF), decision tree (DT), and multilayer perceptron (MLP), were applied to build predictive models for predicting lung metastasis using patient's demographics, clinical characteristics, and therapeutic variables from the SEER database. The model was internally validated using 10-fold cross-validation to calculate the mean area under the curve (AUC) and the model was externally validated using the Chinese multicenter osteosarcoma data. Relative importance ranking of predictors was plotted to understand the importance of each predictor in different ML algorithms. The correlation heat map of predictors was plotted to understand the correlation of each predictor, selecting the 10-fold cross-validation with the highest AUC value in the external validation ROC curve to build a web calculator. RESULTS: Of all enrolled patients from the SEER database, 17.73% (194/1094) developed lung metastasis. The multiple logistic regression analysis showed that sex, N stage, T stage, surgery, and bone metastasis were all independent risk factors for lung metastasis. In predicting lung metastasis, the mean AUCs of the six ML algorithms ranged from 0.711 to 0.738 in internal validation and 0.697 to 0.729 in external validation. Among the six ML algorithms, the extreme gradient boosting (XGBoost) model had the highest AUC value with an average internal AUC of 0.738 and an external AUC of 0.729. The best performing ML algorithm model was used to build a web calculator to facilitate clinicians to calculate the risk of lung metastasis for each patient. CONCLUSIONS: The XGBoost model may have the best prediction effect and the online calculator based on this model can help doctors to determine the lung metastasis risk of osteosarcoma patients and help to make individualized medical strategies. |
format | Online Article Text |
id | pubmed-9106476 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-91064762022-05-14 An External-Validated Prediction Model to Predict Lung Metastasis among Osteosarcoma: A Multicenter Analysis Based on Machine Learning Li, Wenle Liu, Wencai Hussain Memon, Fida Wang, Bing Xu, Chan Dong, Shengtao Wang, Haosheng Hu, Zhaohui Quan, Xubin Deng, Yizhuo Liu, Qiang Su, Shibin Yin, Chengliang Comput Intell Neurosci Research Article BACKGROUND: Lung metastasis greatly affects medical therapeutic strategies in osteosarcoma. This study aimed to develop and validate a clinical prediction model to predict the risk of lung metastasis among osteosarcoma patients based on machine learning (ML) algorithms. METHODS: We retrospectively collected osteosarcoma patients from the Surveillance Epidemiology and End Results (SEER) database and from four hospitals in China. Six ML algorithms, including logistic regression (LR), gradient boosting machine (GBM), extreme gradient boosting (XGBoost), random forest (RF), decision tree (DT), and multilayer perceptron (MLP), were applied to build predictive models for predicting lung metastasis using patient's demographics, clinical characteristics, and therapeutic variables from the SEER database. The model was internally validated using 10-fold cross-validation to calculate the mean area under the curve (AUC) and the model was externally validated using the Chinese multicenter osteosarcoma data. Relative importance ranking of predictors was plotted to understand the importance of each predictor in different ML algorithms. The correlation heat map of predictors was plotted to understand the correlation of each predictor, selecting the 10-fold cross-validation with the highest AUC value in the external validation ROC curve to build a web calculator. RESULTS: Of all enrolled patients from the SEER database, 17.73% (194/1094) developed lung metastasis. The multiple logistic regression analysis showed that sex, N stage, T stage, surgery, and bone metastasis were all independent risk factors for lung metastasis. In predicting lung metastasis, the mean AUCs of the six ML algorithms ranged from 0.711 to 0.738 in internal validation and 0.697 to 0.729 in external validation. Among the six ML algorithms, the extreme gradient boosting (XGBoost) model had the highest AUC value with an average internal AUC of 0.738 and an external AUC of 0.729. The best performing ML algorithm model was used to build a web calculator to facilitate clinicians to calculate the risk of lung metastasis for each patient. CONCLUSIONS: The XGBoost model may have the best prediction effect and the online calculator based on this model can help doctors to determine the lung metastasis risk of osteosarcoma patients and help to make individualized medical strategies. Hindawi 2022-05-06 /pmc/articles/PMC9106476/ /pubmed/35571720 http://dx.doi.org/10.1155/2022/2220527 Text en Copyright © 2022 Wenle Li et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Li, Wenle Liu, Wencai Hussain Memon, Fida Wang, Bing Xu, Chan Dong, Shengtao Wang, Haosheng Hu, Zhaohui Quan, Xubin Deng, Yizhuo Liu, Qiang Su, Shibin Yin, Chengliang An External-Validated Prediction Model to Predict Lung Metastasis among Osteosarcoma: A Multicenter Analysis Based on Machine Learning |
title | An External-Validated Prediction Model to Predict Lung Metastasis among Osteosarcoma: A Multicenter Analysis Based on Machine Learning |
title_full | An External-Validated Prediction Model to Predict Lung Metastasis among Osteosarcoma: A Multicenter Analysis Based on Machine Learning |
title_fullStr | An External-Validated Prediction Model to Predict Lung Metastasis among Osteosarcoma: A Multicenter Analysis Based on Machine Learning |
title_full_unstemmed | An External-Validated Prediction Model to Predict Lung Metastasis among Osteosarcoma: A Multicenter Analysis Based on Machine Learning |
title_short | An External-Validated Prediction Model to Predict Lung Metastasis among Osteosarcoma: A Multicenter Analysis Based on Machine Learning |
title_sort | external-validated prediction model to predict lung metastasis among osteosarcoma: a multicenter analysis based on machine learning |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9106476/ https://www.ncbi.nlm.nih.gov/pubmed/35571720 http://dx.doi.org/10.1155/2022/2220527 |
work_keys_str_mv | AT liwenle anexternalvalidatedpredictionmodeltopredictlungmetastasisamongosteosarcomaamulticenteranalysisbasedonmachinelearning AT liuwencai anexternalvalidatedpredictionmodeltopredictlungmetastasisamongosteosarcomaamulticenteranalysisbasedonmachinelearning AT hussainmemonfida anexternalvalidatedpredictionmodeltopredictlungmetastasisamongosteosarcomaamulticenteranalysisbasedonmachinelearning AT wangbing anexternalvalidatedpredictionmodeltopredictlungmetastasisamongosteosarcomaamulticenteranalysisbasedonmachinelearning AT xuchan anexternalvalidatedpredictionmodeltopredictlungmetastasisamongosteosarcomaamulticenteranalysisbasedonmachinelearning AT dongshengtao anexternalvalidatedpredictionmodeltopredictlungmetastasisamongosteosarcomaamulticenteranalysisbasedonmachinelearning AT wanghaosheng anexternalvalidatedpredictionmodeltopredictlungmetastasisamongosteosarcomaamulticenteranalysisbasedonmachinelearning AT huzhaohui anexternalvalidatedpredictionmodeltopredictlungmetastasisamongosteosarcomaamulticenteranalysisbasedonmachinelearning AT quanxubin anexternalvalidatedpredictionmodeltopredictlungmetastasisamongosteosarcomaamulticenteranalysisbasedonmachinelearning AT dengyizhuo anexternalvalidatedpredictionmodeltopredictlungmetastasisamongosteosarcomaamulticenteranalysisbasedonmachinelearning AT liuqiang anexternalvalidatedpredictionmodeltopredictlungmetastasisamongosteosarcomaamulticenteranalysisbasedonmachinelearning AT sushibin anexternalvalidatedpredictionmodeltopredictlungmetastasisamongosteosarcomaamulticenteranalysisbasedonmachinelearning AT yinchengliang anexternalvalidatedpredictionmodeltopredictlungmetastasisamongosteosarcomaamulticenteranalysisbasedonmachinelearning AT liwenle externalvalidatedpredictionmodeltopredictlungmetastasisamongosteosarcomaamulticenteranalysisbasedonmachinelearning AT liuwencai externalvalidatedpredictionmodeltopredictlungmetastasisamongosteosarcomaamulticenteranalysisbasedonmachinelearning AT hussainmemonfida externalvalidatedpredictionmodeltopredictlungmetastasisamongosteosarcomaamulticenteranalysisbasedonmachinelearning AT wangbing externalvalidatedpredictionmodeltopredictlungmetastasisamongosteosarcomaamulticenteranalysisbasedonmachinelearning AT xuchan externalvalidatedpredictionmodeltopredictlungmetastasisamongosteosarcomaamulticenteranalysisbasedonmachinelearning AT dongshengtao externalvalidatedpredictionmodeltopredictlungmetastasisamongosteosarcomaamulticenteranalysisbasedonmachinelearning AT wanghaosheng externalvalidatedpredictionmodeltopredictlungmetastasisamongosteosarcomaamulticenteranalysisbasedonmachinelearning AT huzhaohui externalvalidatedpredictionmodeltopredictlungmetastasisamongosteosarcomaamulticenteranalysisbasedonmachinelearning AT quanxubin externalvalidatedpredictionmodeltopredictlungmetastasisamongosteosarcomaamulticenteranalysisbasedonmachinelearning AT dengyizhuo externalvalidatedpredictionmodeltopredictlungmetastasisamongosteosarcomaamulticenteranalysisbasedonmachinelearning AT liuqiang externalvalidatedpredictionmodeltopredictlungmetastasisamongosteosarcomaamulticenteranalysisbasedonmachinelearning AT sushibin externalvalidatedpredictionmodeltopredictlungmetastasisamongosteosarcomaamulticenteranalysisbasedonmachinelearning AT yinchengliang externalvalidatedpredictionmodeltopredictlungmetastasisamongosteosarcomaamulticenteranalysisbasedonmachinelearning |