Cargando…

An External-Validated Prediction Model to Predict Lung Metastasis among Osteosarcoma: A Multicenter Analysis Based on Machine Learning

BACKGROUND: Lung metastasis greatly affects medical therapeutic strategies in osteosarcoma. This study aimed to develop and validate a clinical prediction model to predict the risk of lung metastasis among osteosarcoma patients based on machine learning (ML) algorithms. METHODS: We retrospectively c...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Wenle, Liu, Wencai, Hussain Memon, Fida, Wang, Bing, Xu, Chan, Dong, Shengtao, Wang, Haosheng, Hu, Zhaohui, Quan, Xubin, Deng, Yizhuo, Liu, Qiang, Su, Shibin, Yin, Chengliang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9106476/
https://www.ncbi.nlm.nih.gov/pubmed/35571720
http://dx.doi.org/10.1155/2022/2220527
_version_ 1784708293829066752
author Li, Wenle
Liu, Wencai
Hussain Memon, Fida
Wang, Bing
Xu, Chan
Dong, Shengtao
Wang, Haosheng
Hu, Zhaohui
Quan, Xubin
Deng, Yizhuo
Liu, Qiang
Su, Shibin
Yin, Chengliang
author_facet Li, Wenle
Liu, Wencai
Hussain Memon, Fida
Wang, Bing
Xu, Chan
Dong, Shengtao
Wang, Haosheng
Hu, Zhaohui
Quan, Xubin
Deng, Yizhuo
Liu, Qiang
Su, Shibin
Yin, Chengliang
author_sort Li, Wenle
collection PubMed
description BACKGROUND: Lung metastasis greatly affects medical therapeutic strategies in osteosarcoma. This study aimed to develop and validate a clinical prediction model to predict the risk of lung metastasis among osteosarcoma patients based on machine learning (ML) algorithms. METHODS: We retrospectively collected osteosarcoma patients from the Surveillance Epidemiology and End Results (SEER) database and from four hospitals in China. Six ML algorithms, including logistic regression (LR), gradient boosting machine (GBM), extreme gradient boosting (XGBoost), random forest (RF), decision tree (DT), and multilayer perceptron (MLP), were applied to build predictive models for predicting lung metastasis using patient's demographics, clinical characteristics, and therapeutic variables from the SEER database. The model was internally validated using 10-fold cross-validation to calculate the mean area under the curve (AUC) and the model was externally validated using the Chinese multicenter osteosarcoma data. Relative importance ranking of predictors was plotted to understand the importance of each predictor in different ML algorithms. The correlation heat map of predictors was plotted to understand the correlation of each predictor, selecting the 10-fold cross-validation with the highest AUC value in the external validation ROC curve to build a web calculator. RESULTS: Of all enrolled patients from the SEER database, 17.73% (194/1094) developed lung metastasis. The multiple logistic regression analysis showed that sex, N stage, T stage, surgery, and bone metastasis were all independent risk factors for lung metastasis. In predicting lung metastasis, the mean AUCs of the six ML algorithms ranged from 0.711 to 0.738 in internal validation and 0.697 to 0.729 in external validation. Among the six ML algorithms, the extreme gradient boosting (XGBoost) model had the highest AUC value with an average internal AUC of 0.738 and an external AUC of 0.729. The best performing ML algorithm model was used to build a web calculator to facilitate clinicians to calculate the risk of lung metastasis for each patient. CONCLUSIONS: The XGBoost model may have the best prediction effect and the online calculator based on this model can help doctors to determine the lung metastasis risk of osteosarcoma patients and help to make individualized medical strategies.
format Online
Article
Text
id pubmed-9106476
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Hindawi
record_format MEDLINE/PubMed
spelling pubmed-91064762022-05-14 An External-Validated Prediction Model to Predict Lung Metastasis among Osteosarcoma: A Multicenter Analysis Based on Machine Learning Li, Wenle Liu, Wencai Hussain Memon, Fida Wang, Bing Xu, Chan Dong, Shengtao Wang, Haosheng Hu, Zhaohui Quan, Xubin Deng, Yizhuo Liu, Qiang Su, Shibin Yin, Chengliang Comput Intell Neurosci Research Article BACKGROUND: Lung metastasis greatly affects medical therapeutic strategies in osteosarcoma. This study aimed to develop and validate a clinical prediction model to predict the risk of lung metastasis among osteosarcoma patients based on machine learning (ML) algorithms. METHODS: We retrospectively collected osteosarcoma patients from the Surveillance Epidemiology and End Results (SEER) database and from four hospitals in China. Six ML algorithms, including logistic regression (LR), gradient boosting machine (GBM), extreme gradient boosting (XGBoost), random forest (RF), decision tree (DT), and multilayer perceptron (MLP), were applied to build predictive models for predicting lung metastasis using patient's demographics, clinical characteristics, and therapeutic variables from the SEER database. The model was internally validated using 10-fold cross-validation to calculate the mean area under the curve (AUC) and the model was externally validated using the Chinese multicenter osteosarcoma data. Relative importance ranking of predictors was plotted to understand the importance of each predictor in different ML algorithms. The correlation heat map of predictors was plotted to understand the correlation of each predictor, selecting the 10-fold cross-validation with the highest AUC value in the external validation ROC curve to build a web calculator. RESULTS: Of all enrolled patients from the SEER database, 17.73% (194/1094) developed lung metastasis. The multiple logistic regression analysis showed that sex, N stage, T stage, surgery, and bone metastasis were all independent risk factors for lung metastasis. In predicting lung metastasis, the mean AUCs of the six ML algorithms ranged from 0.711 to 0.738 in internal validation and 0.697 to 0.729 in external validation. Among the six ML algorithms, the extreme gradient boosting (XGBoost) model had the highest AUC value with an average internal AUC of 0.738 and an external AUC of 0.729. The best performing ML algorithm model was used to build a web calculator to facilitate clinicians to calculate the risk of lung metastasis for each patient. CONCLUSIONS: The XGBoost model may have the best prediction effect and the online calculator based on this model can help doctors to determine the lung metastasis risk of osteosarcoma patients and help to make individualized medical strategies. Hindawi 2022-05-06 /pmc/articles/PMC9106476/ /pubmed/35571720 http://dx.doi.org/10.1155/2022/2220527 Text en Copyright © 2022 Wenle Li et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Li, Wenle
Liu, Wencai
Hussain Memon, Fida
Wang, Bing
Xu, Chan
Dong, Shengtao
Wang, Haosheng
Hu, Zhaohui
Quan, Xubin
Deng, Yizhuo
Liu, Qiang
Su, Shibin
Yin, Chengliang
An External-Validated Prediction Model to Predict Lung Metastasis among Osteosarcoma: A Multicenter Analysis Based on Machine Learning
title An External-Validated Prediction Model to Predict Lung Metastasis among Osteosarcoma: A Multicenter Analysis Based on Machine Learning
title_full An External-Validated Prediction Model to Predict Lung Metastasis among Osteosarcoma: A Multicenter Analysis Based on Machine Learning
title_fullStr An External-Validated Prediction Model to Predict Lung Metastasis among Osteosarcoma: A Multicenter Analysis Based on Machine Learning
title_full_unstemmed An External-Validated Prediction Model to Predict Lung Metastasis among Osteosarcoma: A Multicenter Analysis Based on Machine Learning
title_short An External-Validated Prediction Model to Predict Lung Metastasis among Osteosarcoma: A Multicenter Analysis Based on Machine Learning
title_sort external-validated prediction model to predict lung metastasis among osteosarcoma: a multicenter analysis based on machine learning
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9106476/
https://www.ncbi.nlm.nih.gov/pubmed/35571720
http://dx.doi.org/10.1155/2022/2220527
work_keys_str_mv AT liwenle anexternalvalidatedpredictionmodeltopredictlungmetastasisamongosteosarcomaamulticenteranalysisbasedonmachinelearning
AT liuwencai anexternalvalidatedpredictionmodeltopredictlungmetastasisamongosteosarcomaamulticenteranalysisbasedonmachinelearning
AT hussainmemonfida anexternalvalidatedpredictionmodeltopredictlungmetastasisamongosteosarcomaamulticenteranalysisbasedonmachinelearning
AT wangbing anexternalvalidatedpredictionmodeltopredictlungmetastasisamongosteosarcomaamulticenteranalysisbasedonmachinelearning
AT xuchan anexternalvalidatedpredictionmodeltopredictlungmetastasisamongosteosarcomaamulticenteranalysisbasedonmachinelearning
AT dongshengtao anexternalvalidatedpredictionmodeltopredictlungmetastasisamongosteosarcomaamulticenteranalysisbasedonmachinelearning
AT wanghaosheng anexternalvalidatedpredictionmodeltopredictlungmetastasisamongosteosarcomaamulticenteranalysisbasedonmachinelearning
AT huzhaohui anexternalvalidatedpredictionmodeltopredictlungmetastasisamongosteosarcomaamulticenteranalysisbasedonmachinelearning
AT quanxubin anexternalvalidatedpredictionmodeltopredictlungmetastasisamongosteosarcomaamulticenteranalysisbasedonmachinelearning
AT dengyizhuo anexternalvalidatedpredictionmodeltopredictlungmetastasisamongosteosarcomaamulticenteranalysisbasedonmachinelearning
AT liuqiang anexternalvalidatedpredictionmodeltopredictlungmetastasisamongosteosarcomaamulticenteranalysisbasedonmachinelearning
AT sushibin anexternalvalidatedpredictionmodeltopredictlungmetastasisamongosteosarcomaamulticenteranalysisbasedonmachinelearning
AT yinchengliang anexternalvalidatedpredictionmodeltopredictlungmetastasisamongosteosarcomaamulticenteranalysisbasedonmachinelearning
AT liwenle externalvalidatedpredictionmodeltopredictlungmetastasisamongosteosarcomaamulticenteranalysisbasedonmachinelearning
AT liuwencai externalvalidatedpredictionmodeltopredictlungmetastasisamongosteosarcomaamulticenteranalysisbasedonmachinelearning
AT hussainmemonfida externalvalidatedpredictionmodeltopredictlungmetastasisamongosteosarcomaamulticenteranalysisbasedonmachinelearning
AT wangbing externalvalidatedpredictionmodeltopredictlungmetastasisamongosteosarcomaamulticenteranalysisbasedonmachinelearning
AT xuchan externalvalidatedpredictionmodeltopredictlungmetastasisamongosteosarcomaamulticenteranalysisbasedonmachinelearning
AT dongshengtao externalvalidatedpredictionmodeltopredictlungmetastasisamongosteosarcomaamulticenteranalysisbasedonmachinelearning
AT wanghaosheng externalvalidatedpredictionmodeltopredictlungmetastasisamongosteosarcomaamulticenteranalysisbasedonmachinelearning
AT huzhaohui externalvalidatedpredictionmodeltopredictlungmetastasisamongosteosarcomaamulticenteranalysisbasedonmachinelearning
AT quanxubin externalvalidatedpredictionmodeltopredictlungmetastasisamongosteosarcomaamulticenteranalysisbasedonmachinelearning
AT dengyizhuo externalvalidatedpredictionmodeltopredictlungmetastasisamongosteosarcomaamulticenteranalysisbasedonmachinelearning
AT liuqiang externalvalidatedpredictionmodeltopredictlungmetastasisamongosteosarcomaamulticenteranalysisbasedonmachinelearning
AT sushibin externalvalidatedpredictionmodeltopredictlungmetastasisamongosteosarcomaamulticenteranalysisbasedonmachinelearning
AT yinchengliang externalvalidatedpredictionmodeltopredictlungmetastasisamongosteosarcomaamulticenteranalysisbasedonmachinelearning