Cargando…
Data Analysis and Knowledge Mining of Machine Learning in Soil Corrosion Factors of the Pipeline Safety
The purpose of this research is to enhance the ability of data analysis and knowledge mining in soil corrosion factors of the pipeline. According to its multifactor characteristics, the rough set algorithm is directly used to analyze and process the observation data without considering any prior inf...
Autores principales: | Zhao, Zhifeng, Chen, Mingyuan, Fan, Heng, Zhang, Nailu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9106478/ https://www.ncbi.nlm.nih.gov/pubmed/35571701 http://dx.doi.org/10.1155/2022/9523878 |
Ejemplares similares
-
Application of Machine Learning in the Reliability Evaluation of Pipelines for the External Anticorrosion Coating
por: Zhao, Zhifeng, et al.
Publicado: (2022) -
Underground pipeline corrosion
por: Orazem, Mark
Publicado: (2014) -
Data mining and machine learning in cybersecurity
por: Dua, Sumeet, et al.
Publicado: (2011) -
Data Mining and Machine Learning in Cybersecurity
por: Dua, Sumeet
Publicado: (2016) -
The mutual influence between corrosion and the surrounding soil microbial communities of buried petroleum pipelines
por: Su, Hong, et al.
Publicado: (2019)