Cargando…
Using Deep Neural Networks to Improve Contact Wrench Estimation of Serial Robotic Manipulators in Static Tasks
Reliable force-driven robot-interaction requires precise contact wrench measurements. In most robot systems these measurements are severely incorrect and in most manipulation tasks expensive additional force sensors are installed. We follow a learning approach to train the dependencies between joint...
Autores principales: | Osburg, Jonas, Kuhlemann, Ivo, Hagenah, Jannis, Ernst, Floris |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9106527/ https://www.ncbi.nlm.nih.gov/pubmed/35572376 http://dx.doi.org/10.3389/frobt.2022.892916 |
Ejemplares similares
-
A neural flexible PID controller for task-space control of robotic manipulators
por: Minh Nguyet, Nguyen Tran, et al.
Publicado: (2023) -
Non-contact robotic manipulation of floating objects: exploiting emergent limit cycles
por: Jacquart, Sylvain, et al.
Publicado: (2023) -
An Adaptive Imitation Learning Framework for Robotic Complex Contact-Rich Insertion Tasks
por: Wang, Yan, et al.
Publicado: (2022) -
Hierarchical, Dense and Dynamic 3D Reconstruction Based on VDB Data Structure for Robotic Manipulation Tasks
por: Mateo, Carlos M., et al.
Publicado: (2021) -
Bayesian optimization with unknown constraints in graphical skill models for compliant manipulation tasks using an industrial robot
por: Gabler, Volker, et al.
Publicado: (2022)