Cargando…
Depression Classification Using Frequent Subgraph Mining Based on Pattern Growth of Frequent Edge in Functional Magnetic Resonance Imaging Uncertain Network
The brain network structure is highly uncertain due to the noise in imaging signals and evaluation methods. Recent works have shown that uncertain brain networks could capture uncertain information with regards to functional connections. Most of the existing research studies covering uncertain brain...
Autores principales: | Li, Yao, Zhou, Zihao, Li, Qifan, Li, Tao, Julian, Ibegbu Nnamdi, Guo, Hao, Chen, Junjie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9106560/ https://www.ncbi.nlm.nih.gov/pubmed/35578623 http://dx.doi.org/10.3389/fnins.2022.889105 |
Ejemplares similares
-
Grasping frequent subgraph mining for bioinformatics applications
por: Mrzic, Aida, et al.
Publicado: (2018) -
RiboFSM: Frequent subgraph mining for the discovery of RNA structures and interactions
por: Gawronski, Alex R, et al.
Publicado: (2014) -
RASMA: a reverse search algorithm for mining maximal frequent subgraphs
por: Salem, Saeed, et al.
Publicado: (2021) -
Frequent Subgraph Mining of Functional Interaction Patterns Across Multiple Cancers
por: Durmaz, Arda, et al.
Publicado: (2021) -
The frequent complete subgraphs in the human connectome
por: Fellner, Máté, et al.
Publicado: (2020)