Cargando…
Integration of Face-to-Face Screening With Real-time Machine Learning to Predict Risk of Suicide Among Adults
IMPORTANCE: Understanding the differences and potential synergies between traditional clinician assessment and automated machine learning might enable more accurate and useful suicide risk detection. OBJECTIVE: To evaluate the respective and combined abilities of a real-time machine learning model a...
Autores principales: | Wilimitis, Drew, Turer, Robert W., Ripperger, Michael, McCoy, Allison B., Sperry, Sarah H., Fielstein, Elliot M., Kurz, Troy, Walsh, Colin G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Medical Association
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9107032/ https://www.ncbi.nlm.nih.gov/pubmed/35560048 http://dx.doi.org/10.1001/jamanetworkopen.2022.12095 |
Ejemplares similares
-
Prospective Validation of an Electronic Health Record–Based, Real-Time Suicide Risk Model
por: Walsh, Colin G., et al.
Publicado: (2021) -
External Validation and Updating of a Statistical Civilian-Based Suicide Risk Model in US Naval Primary Care
por: Ripperger, Michael A., et al.
Publicado: (2023) -
Improving ascertainment of suicidal ideation and suicide attempt with natural language processing
por: Bejan, Cosmin A., et al.
Publicado: (2022) -
Comparison of Face-to-Face vs Digital Delivery of an Osteoarthritis Treatment Program for Hip or Knee Osteoarthritis
por: Jönsson, Therese, et al.
Publicado: (2022) -
Image-Guided Embolotherapy of Arteriovenous Malformations of the Face
por: Schmidt, Vanessa F., et al.
Publicado: (2022)