Cargando…

Potential Therapeutic Effects of Mi-Jian-Chang-Pu Decoction on Neurochemical and Metabolic Changes of Cerebral Ischemia-Reperfusion Injury in Rats

As a traditional Chinese medicine formula, Mi-Jian-Chang-Pu decoction (MJCPD) has been successfully used in patients with language dysfunction and hemiplegia after ischemic stroke (IS). Given the excellent protective effects of MJCPD against nerve damage caused by IS in clinical settings, the presen...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Jingjing, Yang, Lingling, Niu, Yang, Su, Chao, Wang, Yingli, Ren, Ruru, Chen, Jianyu, Ma, Xueqin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9107056/
https://www.ncbi.nlm.nih.gov/pubmed/35578728
http://dx.doi.org/10.1155/2022/7319563
Descripción
Sumario:As a traditional Chinese medicine formula, Mi-Jian-Chang-Pu decoction (MJCPD) has been successfully used in patients with language dysfunction and hemiplegia after ischemic stroke (IS). Given the excellent protective effects of MJCPD against nerve damage caused by IS in clinical settings, the present investigation mainly focused on its underlying mechanism on ischemia-reperfusion (IR) injury. Firstly, by applying the MCAO-induced cerebral IR injury rats, the efficacy of MJCPD on IS was estimated using the neurological deficit score, TTC, HE, and IHC staining, and neurochemical measurements. Secondly, an UHPLC-QTOF-MS/MS-based nontargeted metabolomics was developed to elucidate the characteristic metabolites. MJCPD groups showed significant improvements in the neurological score, infarction volume, and histomorphology, and the changes of GSH, GSSG, GSH-PX, GSSG/GSH, LDH, L-LA, IL-6, TNF-α, and VEGF-c were also reversed to normal levels after the intervention compared to the MCAO model group. Metabolomics profiling identified 21 different metabolites in the model group vs. the sham group, 10 of which were significantly recovered after treatment of MJCPD, and those 10 metabolites were all related to the oxidative stress process including glucose, fatty acid, amino acid, glutamine, and phospholipid metabolisms. Therefore, MJCPD might protect against IS by inhibiting oxidative stress during IR.