Cargando…

Investigation of the optimum conditions for electricity generation by haloalkaliphilic archaeon Natrialba sp. GHMN55 using the Plackett–Burman design: single and stacked MFCs

The production of bioelectricity via the anaerobic oxidation of organic matter by microorganisms is recently receiving much interest and is considered one of the future alternative technologies. In this study, we aimed to produce electrical current by using facultative halophilic archaeon Natrialba...

Descripción completa

Detalles Bibliográficos
Autores principales: Hegazy, Ghada E., Taha, Tarek H., Abdel-Fattah, Yasser R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9107110/
https://www.ncbi.nlm.nih.gov/pubmed/35562834
http://dx.doi.org/10.1186/s12934-022-01810-8
_version_ 1784708419592126464
author Hegazy, Ghada E.
Taha, Tarek H.
Abdel-Fattah, Yasser R.
author_facet Hegazy, Ghada E.
Taha, Tarek H.
Abdel-Fattah, Yasser R.
author_sort Hegazy, Ghada E.
collection PubMed
description The production of bioelectricity via the anaerobic oxidation of organic matter by microorganisms is recently receiving much interest and is considered one of the future alternative technologies. In this study, we aimed to produce electrical current by using facultative halophilic archaeon Natrialba sp. GHMN55 as a biocatalyst at the anode of a microbial fuel cell (MFC) to generate electrons from the anaerobic breakdown of organic matter to produce electrical current. Since the MFC’s performance can be affected by many factors, the Plackett–Burman experimental design was applied to optimize the interaction between these factors when tested together and to identify the most significant factors that influence bioelectricity generation. We found that the factors that significantly affected electrical current generation were casein, inoculum age, magnet-bounded electrodes, NaCl, resistor value, and inoculum size; however, the existence of a mediator and the pH showed negative effects on bioelectricity production, where the maximum value of the 200 mV voltage was achieved after 48 h. The optimum medium formulation obtained using this design led to a decrease in the time required to produce bioelectricity from 20 days (in the basal medium) to 2 days (in the optimized medium). Also, the overall behavior of the cell could be enhanced by using multiple stacked MFCs with different electrical configurations (such as series or parallel chambers) to obtain higher voltages or power densities than the single chambers where the series chambers were recorded at 27.5 mV after 48 h of incubation compared with 12.6 mV and 1.1 mV for parallel and single chambers, respectively. These results indicate that the order of preferred MFC designs regarding total power densities would be series > parallel > single.
format Online
Article
Text
id pubmed-9107110
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-91071102022-05-15 Investigation of the optimum conditions for electricity generation by haloalkaliphilic archaeon Natrialba sp. GHMN55 using the Plackett–Burman design: single and stacked MFCs Hegazy, Ghada E. Taha, Tarek H. Abdel-Fattah, Yasser R. Microb Cell Fact Research The production of bioelectricity via the anaerobic oxidation of organic matter by microorganisms is recently receiving much interest and is considered one of the future alternative technologies. In this study, we aimed to produce electrical current by using facultative halophilic archaeon Natrialba sp. GHMN55 as a biocatalyst at the anode of a microbial fuel cell (MFC) to generate electrons from the anaerobic breakdown of organic matter to produce electrical current. Since the MFC’s performance can be affected by many factors, the Plackett–Burman experimental design was applied to optimize the interaction between these factors when tested together and to identify the most significant factors that influence bioelectricity generation. We found that the factors that significantly affected electrical current generation were casein, inoculum age, magnet-bounded electrodes, NaCl, resistor value, and inoculum size; however, the existence of a mediator and the pH showed negative effects on bioelectricity production, where the maximum value of the 200 mV voltage was achieved after 48 h. The optimum medium formulation obtained using this design led to a decrease in the time required to produce bioelectricity from 20 days (in the basal medium) to 2 days (in the optimized medium). Also, the overall behavior of the cell could be enhanced by using multiple stacked MFCs with different electrical configurations (such as series or parallel chambers) to obtain higher voltages or power densities than the single chambers where the series chambers were recorded at 27.5 mV after 48 h of incubation compared with 12.6 mV and 1.1 mV for parallel and single chambers, respectively. These results indicate that the order of preferred MFC designs regarding total power densities would be series > parallel > single. BioMed Central 2022-05-13 /pmc/articles/PMC9107110/ /pubmed/35562834 http://dx.doi.org/10.1186/s12934-022-01810-8 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
spellingShingle Research
Hegazy, Ghada E.
Taha, Tarek H.
Abdel-Fattah, Yasser R.
Investigation of the optimum conditions for electricity generation by haloalkaliphilic archaeon Natrialba sp. GHMN55 using the Plackett–Burman design: single and stacked MFCs
title Investigation of the optimum conditions for electricity generation by haloalkaliphilic archaeon Natrialba sp. GHMN55 using the Plackett–Burman design: single and stacked MFCs
title_full Investigation of the optimum conditions for electricity generation by haloalkaliphilic archaeon Natrialba sp. GHMN55 using the Plackett–Burman design: single and stacked MFCs
title_fullStr Investigation of the optimum conditions for electricity generation by haloalkaliphilic archaeon Natrialba sp. GHMN55 using the Plackett–Burman design: single and stacked MFCs
title_full_unstemmed Investigation of the optimum conditions for electricity generation by haloalkaliphilic archaeon Natrialba sp. GHMN55 using the Plackett–Burman design: single and stacked MFCs
title_short Investigation of the optimum conditions for electricity generation by haloalkaliphilic archaeon Natrialba sp. GHMN55 using the Plackett–Burman design: single and stacked MFCs
title_sort investigation of the optimum conditions for electricity generation by haloalkaliphilic archaeon natrialba sp. ghmn55 using the plackett–burman design: single and stacked mfcs
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9107110/
https://www.ncbi.nlm.nih.gov/pubmed/35562834
http://dx.doi.org/10.1186/s12934-022-01810-8
work_keys_str_mv AT hegazyghadae investigationoftheoptimumconditionsforelectricitygenerationbyhaloalkaliphilicarchaeonnatrialbaspghmn55usingtheplackettburmandesignsingleandstackedmfcs
AT tahatarekh investigationoftheoptimumconditionsforelectricitygenerationbyhaloalkaliphilicarchaeonnatrialbaspghmn55usingtheplackettburmandesignsingleandstackedmfcs
AT abdelfattahyasserr investigationoftheoptimumconditionsforelectricitygenerationbyhaloalkaliphilicarchaeonnatrialbaspghmn55usingtheplackettburmandesignsingleandstackedmfcs