Cargando…
Development and validation of an ensemble artificial intelligence model for comprehensive imaging quality check to classify body parts and contrast enhancement
BACKGROUND: Despite the dramatic increase in the use of medical imaging in various therapeutic fields of clinical trials, the first step of image quality check (image QC), which aims to check whether images are uploaded appropriately according to the predefined rules, is still performed manually by...
Autores principales: | Na, Seongwon, Sung, Yu Sub, Ko, Yousun, Shin, Youngbin, Lee, Junghyun, Ha, Jiyeon, Ham, Su Jung, Yoon, Kyoungro, Kim, Kyung Won |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9107169/ https://www.ncbi.nlm.nih.gov/pubmed/35562705 http://dx.doi.org/10.1186/s12880-022-00815-4 |
Ejemplares similares
-
Evolution of Radiological Treatment Response Assessments for Cancer Immunotherapy: From iRECIST to Radiomics and Artificial Intelligence
por: Kim, Nari, et al.
Publicado: (2022) -
Artificial Intelligence in Gastric Cancer Imaging With Emphasis on Diagnostic Imaging and Body Morphometry
por: Kim, Kyung Won, et al.
Publicado: (2023) -
Comprehensive Analysis for Anti-Cancer Target-Indication Prioritization of Placental Growth Factor Inhibitor (PGF) by Use of Omics and Patient Survival Data
por: Kim, Nari, et al.
Publicado: (2023) -
Incidence of Immune-Mediated Pseudoprogression of Lymphoma Treated with Immune Checkpoint Inhibitors: Systematic Review and Meta-Analysis
por: Lee, Amy Junghyun, et al.
Publicado: (2021) -
Comprehensive benchmarking and ensemble approaches for metagenomic classifiers
por: McIntyre, Alexa B. R., et al.
Publicado: (2017)