Cargando…
An optimal brain tumor segmentation algorithm for clinical MRI dataset with low resolution and non-contiguous slices
BACKGROUND: Segmenting brain tumor and its constituent regions from magnetic resonance images (MRI) is important for planning diagnosis and treatment. In clinical routine often an experienced radiologist delineates the tumor regions using multimodal MRI. But this manual segmentation is prone to poor...
Autores principales: | Battalapalli, Dheerendranath, Rao, B. V. V. S. N. Prabhakar, Yogeeswari, P., Kesavadas, C., Rajagopalan, Venkateswaran |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9107172/ https://www.ncbi.nlm.nih.gov/pubmed/35568820 http://dx.doi.org/10.1186/s12880-022-00812-7 |
Ejemplares similares
-
Fractal dimension: analyzing its potential as a neuroimaging biomarker for brain tumor diagnosis using machine learning
por: Battalapalli, Dheerendranath, et al.
Publicado: (2023) -
Deep Learning Classifies Low- and High-Grade Glioma Patients with High Accuracy, Sensitivity, and Specificity Based on Their Brain White Matter Networks Derived from Diffusion Tensor Imaging
por: Vidyadharan, Sreejith, et al.
Publicado: (2022) -
New Microbleeds After Thrombolysis: Contiguous Thin-Slice 3T MRI
por: Yan, Shenqiang, et al.
Publicado: (2014) -
Nunchaku: optimally partitioning data into piece-wise contiguous segments
por: Huo, Yu, et al.
Publicado: (2023) -
Engineered CRISPR-Cas systems for the detection and control of antibiotic-resistant infections
por: Wu, Yuye, et al.
Publicado: (2021)