Cargando…

Pediatric medulloblastoma express immune checkpoint B7-H3

PURPOSE: Medulloblastomas (MB) are highly malignant brain tumors that predominantly occur in young infants. Immunotherapy to boost the immune system is emerging as a novel promising approach, but is often hampered by inhibitory immune checkpoints. In the present study, we have studied immune checkpo...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, S., Poolen, G. C., van Vliet, L. C., Schipper, J. G., Broekhuizen, R., Monnikhof, M., Van Hecke, W., Vermeulen, J. F., Bovenschen, N.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9107433/
https://www.ncbi.nlm.nih.gov/pubmed/34988920
http://dx.doi.org/10.1007/s12094-021-02762-y
Descripción
Sumario:PURPOSE: Medulloblastomas (MB) are highly malignant brain tumors that predominantly occur in young infants. Immunotherapy to boost the immune system is emerging as a novel promising approach, but is often hampered by inhibitory immune checkpoints. In the present study, we have studied immune checkpoint B7-H3 expression in a tissue cohort of human pediatric MB. METHODS: Expression of B7-H3 was detected by immunohistochemistry and classified via B7-H3 staining intensity and percentage of B7-H3 positive tumor cells. Subsequently, B7-H3 protein expression was distinguished in MB molecular subtypes and correlated to immune cell infiltrates, patient characteristics, and survival. RESULTS: B7-H3 protein expression was found in 23 out of 24 (96%) human pediatric MB cases and in 17 out of 24 (71%) MB cases > 25% of tumor cells had any level of B7-H3 expression. B7-H3 protein expression was more frequent on Group-4 MB as compared with other molecular subtypes (p = 0.02). Tumors with high B7-H3 expression showed less influx of γδT cells (p = 0.002) and CD3+ T cells (p = 0.041). CONCLUSION: Immune checkpoint B7-H3 is differentially expressed by the large majority of pediatric MB. This further warrants the development of novel B7-H3-directed (immuno)therapeutic methods for children with incurable, metastatic, or chemo-resistant MB.