Cargando…

Characterising sex differences of autosomal DNA methylation in whole blood using the Illumina EPIC array

BACKGROUND: Sex differences are known to play a role in disease aetiology, progression and outcome. Previous studies have revealed autosomal epigenetic differences between males and females in some tissues, including differences in DNA methylation patterns. Here, we report for the first time an anal...

Descripción completa

Detalles Bibliográficos
Autores principales: Grant, Olivia A., Wang, Yucheng, Kumari, Meena, Zabet, Nicolae Radu, Schalkwyk, Leonard
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9107695/
https://www.ncbi.nlm.nih.gov/pubmed/35568878
http://dx.doi.org/10.1186/s13148-022-01279-7
Descripción
Sumario:BACKGROUND: Sex differences are known to play a role in disease aetiology, progression and outcome. Previous studies have revealed autosomal epigenetic differences between males and females in some tissues, including differences in DNA methylation patterns. Here, we report for the first time an analysis of autosomal sex differences in DNAme using the Illumina EPIC array in human whole blood by performing a discovery (n = 1171) and validation (n = 2471) analysis. RESULTS: We identified and validated 396 sex-associated differentially methylated CpG sites (saDMPs) with the majority found to be female-biased CpGs (74%). These saDMP’s are enriched in CpG islands and CpG shores and located preferentially at 5’UTRs, 3’UTRs and enhancers. Additionally, we identified 266 significant sex-associated differentially methylated regions overlapping genes, which have previously been shown to exhibit epigenetic sex differences, and novel genes. Transcription factor binding site enrichment revealed enrichment of transcription factors related to critical developmental processes and sex determination such as SRY and ESR1. CONCLUSION: Our study reports a reliable catalogue of sex-associated CpG sites and elucidates several characteristics of these sites using large-scale discovery and validation data sets. This resource will benefit future studies aiming to investigate sex specific epigenetic signatures and further our understanding of the role of DNA methylation in sex differences in human whole blood. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13148-022-01279-7.