Cargando…
2D-DIGE based proteome analysis of wheat-Thinopyrum intermedium 7XL/7DS translocation line under drought stress
BACKGROUND: Drought stress is the most limiting factor for plant growth and crop production worldwide. As a major cereal crop, wheat is susceptible to drought. Thus, discovering and utilizing drought-tolerant gene resources from related species are highly important for improving wheat drought resist...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9107758/ https://www.ncbi.nlm.nih.gov/pubmed/35568798 http://dx.doi.org/10.1186/s12864-022-08599-1 |
_version_ | 1784708553296052224 |
---|---|
author | Lu, Fengkun Duan, Wenjing Cui, Yue Zhang, Junwei Zhu, Dong Zhang, Ming Yan, Yueming |
author_facet | Lu, Fengkun Duan, Wenjing Cui, Yue Zhang, Junwei Zhu, Dong Zhang, Ming Yan, Yueming |
author_sort | Lu, Fengkun |
collection | PubMed |
description | BACKGROUND: Drought stress is the most limiting factor for plant growth and crop production worldwide. As a major cereal crop, wheat is susceptible to drought. Thus, discovering and utilizing drought-tolerant gene resources from related species are highly important for improving wheat drought resistance. In this study, the drought tolerance of wheat Zhongmai 8601-Thinopyrum intermedium 7XL/7DS translocation line YW642 was estimated under drought stress, and then two-dimensional difference gel electrophoresis (2D-DIGE) based proteome analysis of the developing grains was performed to uncover the drought-resistant proteins. RESULTS: The results showed that 7XL/7DS translocation possessed a better drought-tolerance compared to Zhongmai 8601. 2D-DIGE identified 146 differential accumulation protein (DAP) spots corresponding to 113 unique proteins during five grain developmental stages of YW642 under drought stress. Among them, 55 DAP spots corresponding to 48 unique proteins displayed an upregulated expression, which were mainly involved in stress/defense, energy metabolism, starch metabolism, protein metabolism/folding and transport. The cis-acting element analysis revealed that abundant stress-related elements were present in the promoter regions of the drought-responsive protein genes, which could play important roles in drought defense. RNA-seq and RT-qPCR analyses revealed that some regulated DAP genes also showed a high expression level in response to drought stress. CONCLUSIONS: Our results indicated that Wheat-Th. intermedium 7XL/7DS translocation line carried abundant drought-resistant proteins that had potential application values for wheat drought tolerance improvement. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12864-022-08599-1. |
format | Online Article Text |
id | pubmed-9107758 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-91077582022-05-16 2D-DIGE based proteome analysis of wheat-Thinopyrum intermedium 7XL/7DS translocation line under drought stress Lu, Fengkun Duan, Wenjing Cui, Yue Zhang, Junwei Zhu, Dong Zhang, Ming Yan, Yueming BMC Genomics Research BACKGROUND: Drought stress is the most limiting factor for plant growth and crop production worldwide. As a major cereal crop, wheat is susceptible to drought. Thus, discovering and utilizing drought-tolerant gene resources from related species are highly important for improving wheat drought resistance. In this study, the drought tolerance of wheat Zhongmai 8601-Thinopyrum intermedium 7XL/7DS translocation line YW642 was estimated under drought stress, and then two-dimensional difference gel electrophoresis (2D-DIGE) based proteome analysis of the developing grains was performed to uncover the drought-resistant proteins. RESULTS: The results showed that 7XL/7DS translocation possessed a better drought-tolerance compared to Zhongmai 8601. 2D-DIGE identified 146 differential accumulation protein (DAP) spots corresponding to 113 unique proteins during five grain developmental stages of YW642 under drought stress. Among them, 55 DAP spots corresponding to 48 unique proteins displayed an upregulated expression, which were mainly involved in stress/defense, energy metabolism, starch metabolism, protein metabolism/folding and transport. The cis-acting element analysis revealed that abundant stress-related elements were present in the promoter regions of the drought-responsive protein genes, which could play important roles in drought defense. RNA-seq and RT-qPCR analyses revealed that some regulated DAP genes also showed a high expression level in response to drought stress. CONCLUSIONS: Our results indicated that Wheat-Th. intermedium 7XL/7DS translocation line carried abundant drought-resistant proteins that had potential application values for wheat drought tolerance improvement. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12864-022-08599-1. BioMed Central 2022-05-14 /pmc/articles/PMC9107758/ /pubmed/35568798 http://dx.doi.org/10.1186/s12864-022-08599-1 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Lu, Fengkun Duan, Wenjing Cui, Yue Zhang, Junwei Zhu, Dong Zhang, Ming Yan, Yueming 2D-DIGE based proteome analysis of wheat-Thinopyrum intermedium 7XL/7DS translocation line under drought stress |
title | 2D-DIGE based proteome analysis of wheat-Thinopyrum intermedium 7XL/7DS translocation line under drought stress |
title_full | 2D-DIGE based proteome analysis of wheat-Thinopyrum intermedium 7XL/7DS translocation line under drought stress |
title_fullStr | 2D-DIGE based proteome analysis of wheat-Thinopyrum intermedium 7XL/7DS translocation line under drought stress |
title_full_unstemmed | 2D-DIGE based proteome analysis of wheat-Thinopyrum intermedium 7XL/7DS translocation line under drought stress |
title_short | 2D-DIGE based proteome analysis of wheat-Thinopyrum intermedium 7XL/7DS translocation line under drought stress |
title_sort | 2d-dige based proteome analysis of wheat-thinopyrum intermedium 7xl/7ds translocation line under drought stress |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9107758/ https://www.ncbi.nlm.nih.gov/pubmed/35568798 http://dx.doi.org/10.1186/s12864-022-08599-1 |
work_keys_str_mv | AT lufengkun 2ddigebasedproteomeanalysisofwheatthinopyrumintermedium7xl7dstranslocationlineunderdroughtstress AT duanwenjing 2ddigebasedproteomeanalysisofwheatthinopyrumintermedium7xl7dstranslocationlineunderdroughtstress AT cuiyue 2ddigebasedproteomeanalysisofwheatthinopyrumintermedium7xl7dstranslocationlineunderdroughtstress AT zhangjunwei 2ddigebasedproteomeanalysisofwheatthinopyrumintermedium7xl7dstranslocationlineunderdroughtstress AT zhudong 2ddigebasedproteomeanalysisofwheatthinopyrumintermedium7xl7dstranslocationlineunderdroughtstress AT zhangming 2ddigebasedproteomeanalysisofwheatthinopyrumintermedium7xl7dstranslocationlineunderdroughtstress AT yanyueming 2ddigebasedproteomeanalysisofwheatthinopyrumintermedium7xl7dstranslocationlineunderdroughtstress |