Cargando…
Brain simulation augments machine‐learning–based classification of dementia
INTRODUCTION: Computational brain network modeling using The Virtual Brain (TVB) simulation platform acts synergistically with machine learning (ML) and multi‐modal neuroimaging to reveal mechanisms and improve diagnostics in Alzheimer's disease (AD). METHODS: We enhance large‐scale whole‐brain...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9107774/ https://www.ncbi.nlm.nih.gov/pubmed/35601598 http://dx.doi.org/10.1002/trc2.12303 |
_version_ | 1784708556493160448 |
---|---|
author | Triebkorn, Paul Stefanovski, Leon Dhindsa, Kiret Diaz‐Cortes, Margarita‐Arimatea Bey, Patrik Bülau, Konstantin Pai, Roopa Spiegler, Andreas Solodkin, Ana Jirsa, Viktor McIntosh, Anthony Randal Ritter, Petra |
author_facet | Triebkorn, Paul Stefanovski, Leon Dhindsa, Kiret Diaz‐Cortes, Margarita‐Arimatea Bey, Patrik Bülau, Konstantin Pai, Roopa Spiegler, Andreas Solodkin, Ana Jirsa, Viktor McIntosh, Anthony Randal Ritter, Petra |
author_sort | Triebkorn, Paul |
collection | PubMed |
description | INTRODUCTION: Computational brain network modeling using The Virtual Brain (TVB) simulation platform acts synergistically with machine learning (ML) and multi‐modal neuroimaging to reveal mechanisms and improve diagnostics in Alzheimer's disease (AD). METHODS: We enhance large‐scale whole‐brain simulation in TVB with a cause‐and‐effect model linking local amyloid beta (Aβ) positron emission tomography (PET) with altered excitability. We use PET and magnetic resonance imaging (MRI) data from 33 participants of the Alzheimer's Disease Neuroimaging Initiative (ADNI3) combined with frequency compositions of TVB‐simulated local field potentials (LFP) for ML classification. RESULTS: The combination of empirical neuroimaging features and simulated LFPs significantly outperformed the classification accuracy of empirical data alone by about 10% (weighted F1‐score empirical 64.34% vs. combined 74.28%). Informative features showed high biological plausibility regarding the AD‐typical spatial distribution. DISCUSSION: The cause‐and‐effect implementation of local hyperexcitation caused by Aβ can improve the ML–driven classification of AD and demonstrates TVB's ability to decode information in empirical data using connectivity‐based brain simulation. |
format | Online Article Text |
id | pubmed-9107774 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-91077742022-05-20 Brain simulation augments machine‐learning–based classification of dementia Triebkorn, Paul Stefanovski, Leon Dhindsa, Kiret Diaz‐Cortes, Margarita‐Arimatea Bey, Patrik Bülau, Konstantin Pai, Roopa Spiegler, Andreas Solodkin, Ana Jirsa, Viktor McIntosh, Anthony Randal Ritter, Petra Alzheimers Dement (N Y) Research Articles INTRODUCTION: Computational brain network modeling using The Virtual Brain (TVB) simulation platform acts synergistically with machine learning (ML) and multi‐modal neuroimaging to reveal mechanisms and improve diagnostics in Alzheimer's disease (AD). METHODS: We enhance large‐scale whole‐brain simulation in TVB with a cause‐and‐effect model linking local amyloid beta (Aβ) positron emission tomography (PET) with altered excitability. We use PET and magnetic resonance imaging (MRI) data from 33 participants of the Alzheimer's Disease Neuroimaging Initiative (ADNI3) combined with frequency compositions of TVB‐simulated local field potentials (LFP) for ML classification. RESULTS: The combination of empirical neuroimaging features and simulated LFPs significantly outperformed the classification accuracy of empirical data alone by about 10% (weighted F1‐score empirical 64.34% vs. combined 74.28%). Informative features showed high biological plausibility regarding the AD‐typical spatial distribution. DISCUSSION: The cause‐and‐effect implementation of local hyperexcitation caused by Aβ can improve the ML–driven classification of AD and demonstrates TVB's ability to decode information in empirical data using connectivity‐based brain simulation. John Wiley and Sons Inc. 2022-05-15 /pmc/articles/PMC9107774/ /pubmed/35601598 http://dx.doi.org/10.1002/trc2.12303 Text en © 2022 The Authors. Alzheimer's & Dementia: Diagnosis, Assessment & Disease Monitoring published by Wiley Periodicals, LLC on behalf of Alzheimer's Association. https://creativecommons.org/licenses/by-nc/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
spellingShingle | Research Articles Triebkorn, Paul Stefanovski, Leon Dhindsa, Kiret Diaz‐Cortes, Margarita‐Arimatea Bey, Patrik Bülau, Konstantin Pai, Roopa Spiegler, Andreas Solodkin, Ana Jirsa, Viktor McIntosh, Anthony Randal Ritter, Petra Brain simulation augments machine‐learning–based classification of dementia |
title | Brain simulation augments machine‐learning–based classification of dementia |
title_full | Brain simulation augments machine‐learning–based classification of dementia |
title_fullStr | Brain simulation augments machine‐learning–based classification of dementia |
title_full_unstemmed | Brain simulation augments machine‐learning–based classification of dementia |
title_short | Brain simulation augments machine‐learning–based classification of dementia |
title_sort | brain simulation augments machine‐learning–based classification of dementia |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9107774/ https://www.ncbi.nlm.nih.gov/pubmed/35601598 http://dx.doi.org/10.1002/trc2.12303 |
work_keys_str_mv | AT triebkornpaul brainsimulationaugmentsmachinelearningbasedclassificationofdementia AT stefanovskileon brainsimulationaugmentsmachinelearningbasedclassificationofdementia AT dhindsakiret brainsimulationaugmentsmachinelearningbasedclassificationofdementia AT diazcortesmargaritaarimatea brainsimulationaugmentsmachinelearningbasedclassificationofdementia AT beypatrik brainsimulationaugmentsmachinelearningbasedclassificationofdementia AT bulaukonstantin brainsimulationaugmentsmachinelearningbasedclassificationofdementia AT pairoopa brainsimulationaugmentsmachinelearningbasedclassificationofdementia AT spieglerandreas brainsimulationaugmentsmachinelearningbasedclassificationofdementia AT solodkinana brainsimulationaugmentsmachinelearningbasedclassificationofdementia AT jirsaviktor brainsimulationaugmentsmachinelearningbasedclassificationofdementia AT mcintoshanthonyrandal brainsimulationaugmentsmachinelearningbasedclassificationofdementia AT ritterpetra brainsimulationaugmentsmachinelearningbasedclassificationofdementia AT brainsimulationaugmentsmachinelearningbasedclassificationofdementia |