Cargando…

Brain simulation augments machine‐learning–based classification of dementia

INTRODUCTION: Computational brain network modeling using The Virtual Brain (TVB) simulation platform acts synergistically with machine learning (ML) and multi‐modal neuroimaging to reveal mechanisms and improve diagnostics in Alzheimer's disease (AD). METHODS: We enhance large‐scale whole‐brain...

Descripción completa

Detalles Bibliográficos
Autores principales: Triebkorn, Paul, Stefanovski, Leon, Dhindsa, Kiret, Diaz‐Cortes, Margarita‐Arimatea, Bey, Patrik, Bülau, Konstantin, Pai, Roopa, Spiegler, Andreas, Solodkin, Ana, Jirsa, Viktor, McIntosh, Anthony Randal, Ritter, Petra
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9107774/
https://www.ncbi.nlm.nih.gov/pubmed/35601598
http://dx.doi.org/10.1002/trc2.12303
_version_ 1784708556493160448
author Triebkorn, Paul
Stefanovski, Leon
Dhindsa, Kiret
Diaz‐Cortes, Margarita‐Arimatea
Bey, Patrik
Bülau, Konstantin
Pai, Roopa
Spiegler, Andreas
Solodkin, Ana
Jirsa, Viktor
McIntosh, Anthony Randal
Ritter, Petra
author_facet Triebkorn, Paul
Stefanovski, Leon
Dhindsa, Kiret
Diaz‐Cortes, Margarita‐Arimatea
Bey, Patrik
Bülau, Konstantin
Pai, Roopa
Spiegler, Andreas
Solodkin, Ana
Jirsa, Viktor
McIntosh, Anthony Randal
Ritter, Petra
author_sort Triebkorn, Paul
collection PubMed
description INTRODUCTION: Computational brain network modeling using The Virtual Brain (TVB) simulation platform acts synergistically with machine learning (ML) and multi‐modal neuroimaging to reveal mechanisms and improve diagnostics in Alzheimer's disease (AD). METHODS: We enhance large‐scale whole‐brain simulation in TVB with a cause‐and‐effect model linking local amyloid beta (Aβ) positron emission tomography (PET) with altered excitability. We use PET and magnetic resonance imaging (MRI) data from 33 participants of the Alzheimer's Disease Neuroimaging Initiative (ADNI3) combined with frequency compositions of TVB‐simulated local field potentials (LFP) for ML classification. RESULTS: The combination of empirical neuroimaging features and simulated LFPs significantly outperformed the classification accuracy of empirical data alone by about 10% (weighted F1‐score empirical 64.34% vs. combined 74.28%). Informative features showed high biological plausibility regarding the AD‐typical spatial distribution. DISCUSSION: The cause‐and‐effect implementation of local hyperexcitation caused by Aβ can improve the ML–driven classification of AD and demonstrates TVB's ability to decode information in empirical data using connectivity‐based brain simulation.
format Online
Article
Text
id pubmed-9107774
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-91077742022-05-20 Brain simulation augments machine‐learning–based classification of dementia Triebkorn, Paul Stefanovski, Leon Dhindsa, Kiret Diaz‐Cortes, Margarita‐Arimatea Bey, Patrik Bülau, Konstantin Pai, Roopa Spiegler, Andreas Solodkin, Ana Jirsa, Viktor McIntosh, Anthony Randal Ritter, Petra Alzheimers Dement (N Y) Research Articles INTRODUCTION: Computational brain network modeling using The Virtual Brain (TVB) simulation platform acts synergistically with machine learning (ML) and multi‐modal neuroimaging to reveal mechanisms and improve diagnostics in Alzheimer's disease (AD). METHODS: We enhance large‐scale whole‐brain simulation in TVB with a cause‐and‐effect model linking local amyloid beta (Aβ) positron emission tomography (PET) with altered excitability. We use PET and magnetic resonance imaging (MRI) data from 33 participants of the Alzheimer's Disease Neuroimaging Initiative (ADNI3) combined with frequency compositions of TVB‐simulated local field potentials (LFP) for ML classification. RESULTS: The combination of empirical neuroimaging features and simulated LFPs significantly outperformed the classification accuracy of empirical data alone by about 10% (weighted F1‐score empirical 64.34% vs. combined 74.28%). Informative features showed high biological plausibility regarding the AD‐typical spatial distribution. DISCUSSION: The cause‐and‐effect implementation of local hyperexcitation caused by Aβ can improve the ML–driven classification of AD and demonstrates TVB's ability to decode information in empirical data using connectivity‐based brain simulation. John Wiley and Sons Inc. 2022-05-15 /pmc/articles/PMC9107774/ /pubmed/35601598 http://dx.doi.org/10.1002/trc2.12303 Text en © 2022 The Authors. Alzheimer's & Dementia: Diagnosis, Assessment & Disease Monitoring published by Wiley Periodicals, LLC on behalf of Alzheimer's Association. https://creativecommons.org/licenses/by-nc/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
spellingShingle Research Articles
Triebkorn, Paul
Stefanovski, Leon
Dhindsa, Kiret
Diaz‐Cortes, Margarita‐Arimatea
Bey, Patrik
Bülau, Konstantin
Pai, Roopa
Spiegler, Andreas
Solodkin, Ana
Jirsa, Viktor
McIntosh, Anthony Randal
Ritter, Petra
Brain simulation augments machine‐learning–based classification of dementia
title Brain simulation augments machine‐learning–based classification of dementia
title_full Brain simulation augments machine‐learning–based classification of dementia
title_fullStr Brain simulation augments machine‐learning–based classification of dementia
title_full_unstemmed Brain simulation augments machine‐learning–based classification of dementia
title_short Brain simulation augments machine‐learning–based classification of dementia
title_sort brain simulation augments machine‐learning–based classification of dementia
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9107774/
https://www.ncbi.nlm.nih.gov/pubmed/35601598
http://dx.doi.org/10.1002/trc2.12303
work_keys_str_mv AT triebkornpaul brainsimulationaugmentsmachinelearningbasedclassificationofdementia
AT stefanovskileon brainsimulationaugmentsmachinelearningbasedclassificationofdementia
AT dhindsakiret brainsimulationaugmentsmachinelearningbasedclassificationofdementia
AT diazcortesmargaritaarimatea brainsimulationaugmentsmachinelearningbasedclassificationofdementia
AT beypatrik brainsimulationaugmentsmachinelearningbasedclassificationofdementia
AT bulaukonstantin brainsimulationaugmentsmachinelearningbasedclassificationofdementia
AT pairoopa brainsimulationaugmentsmachinelearningbasedclassificationofdementia
AT spieglerandreas brainsimulationaugmentsmachinelearningbasedclassificationofdementia
AT solodkinana brainsimulationaugmentsmachinelearningbasedclassificationofdementia
AT jirsaviktor brainsimulationaugmentsmachinelearningbasedclassificationofdementia
AT mcintoshanthonyrandal brainsimulationaugmentsmachinelearningbasedclassificationofdementia
AT ritterpetra brainsimulationaugmentsmachinelearningbasedclassificationofdementia
AT brainsimulationaugmentsmachinelearningbasedclassificationofdementia