Cargando…
Distributionally robust mean-absolute deviation portfolio optimization using wasserstein metric
Data uncertainty has a great impact on portfolio selection. Based on the popular mean-absolute deviation (MAD) model, we investigate how to make robust portfolio decisions. In this paper, a novel Wasserstein metric-based data-driven distributionally robust mean-absolute deviation (DR-MAD) model is p...
Autores principales: | Chen, Dali, Wu, Yuwei, Li, Jingquan, Ding, Xiaohui, Chen, Caihua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9108021/ https://www.ncbi.nlm.nih.gov/pubmed/35601808 http://dx.doi.org/10.1007/s10898-022-01171-x |
Ejemplares similares
-
Distributionally robust learning-to-rank under the Wasserstein metric
por: Sotudian, Shahabeddin, et al.
Publicado: (2023) -
Portfolio Optimization with a Mean–Absolute Deviation–Entropy Multi-Objective Model
por: Lam, Weng Siew, et al.
Publicado: (2021) -
Sensitivity analysis of Wasserstein distributionally robust optimization problems
por: Bartl, Daniel, et al.
Publicado: (2021) -
Calculating the Wasserstein Metric-Based Boltzmann Entropy of a Landscape Mosaic
por: Zhang, Hong, et al.
Publicado: (2020) -
Geometric Characteristics of the Wasserstein Metric on SPD(n) and Its Applications on Data Processing
por: Luo, Yihao, et al.
Publicado: (2021)