Cargando…
Cubic-meter scale laboratory fault re-activation experiments to improve the understanding of induced seismicity risks
To understand fluid induced seismicity, we have designed a large-scale laboratory experiment consisting of a one-cubic-meter sandstone with an artificial fault cut and fluid-injection boreholes. The sandstone block is assembled in a true triaxial loading frame and equipped with 38 piezoelectric sens...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9108097/ https://www.ncbi.nlm.nih.gov/pubmed/35570215 http://dx.doi.org/10.1038/s41598-022-11715-6 |
Sumario: | To understand fluid induced seismicity, we have designed a large-scale laboratory experiment consisting of a one-cubic-meter sandstone with an artificial fault cut and fluid-injection boreholes. The sandstone block is assembled in a true triaxial loading frame and equipped with 38 piezoelectric sensors to locate and characterise acoustic emission events. The differential stress on the artificial fault is increased in stages to bring it towards a critically stressed state. After each stage of differential stress increase, fluids are injected at low pressures through boreholes to test the potential of fault re-activation. In addition, a high-pressure injection was conducted that created a hydraulic fracture from the injection borehole towards the artificial fault. The newly generated fluid pathway resulted in an activation of the complete block through a stick–slip movement. We compare acoustic emission measurements from the laboratory experiment with seismicity observations from the field-scale CO(2) injection at Decatur, Illinois, U.S., and conclude that the existence of fluid pathways plays a decisive role for the potential of induced seismicity. |
---|