Cargando…
Non-Invasive Prediction of Survival Time of Midline Glioma Patients Using Machine Learning on Multiparametric MRI Radiomics Features
OBJECTIVES: To explore the feasibility of predicting overall survival (OS) of patients with midline glioma using multi-parameter magnetic resonance imaging (MRI) features. METHODS: Data of 84 patients with midline gliomas were retrospectively collected, including 40 patients with OS > 12 months (...
Autores principales: | Deng, Da-Biao, Liao, Yu-Ting, Zhou, Jiang-Fen, Cheng, Li-Na, He, Peng, Wu, Sheng-Nan, Wang, Wen-Sheng, Zhou, Quan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9108285/ https://www.ncbi.nlm.nih.gov/pubmed/35585843 http://dx.doi.org/10.3389/fneur.2022.866274 |
Ejemplares similares
-
Repeatability of Multiparametric Prostate MRI Radiomics Features
por: Schwier, Michael, et al.
Publicado: (2019) -
Multiparametric MRI Features Predict the SYP Gene Expression in Low-Grade Glioma Patients: A Machine Learning-Based Radiomics Analysis
por: Xiao, Zheng, et al.
Publicado: (2021) -
Early prognostication of overall survival for pediatric diffuse midline gliomas using MRI radiomics and machine learning
por: Liu, Xinyang, et al.
Publicado: (2023) -
Radiomics and Qualitative Features From Multiparametric MRI Predict Molecular Subtypes in Patients With Lower-Grade Glioma
por: Sun, Chen, et al.
Publicado: (2022) -
IMG-10. MRI-BASED RADIOMIC PROGNOSTIC MARKERS OF DIFFUSE MIDLINE GLIOMA
por: Tam, Lydia, et al.
Publicado: (2020)