Cargando…
Molecular Subtyping of Cancer Based on Distinguishing Co-Expression Modules and Machine Learning
Molecular subtyping of cancer is recognized as a critical and challenging step towards individualized therapy. Most existing computational methods solve this problem via multi-classification of gene-expressions of cancer samples. Although these methods, especially deep learning, perform well in data...
Autores principales: | Sun, Peishuo, Wu, Ying, Yin, Chaoyi, Jiang, Hongyang, Xu, Ying, Sun, Huiyan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9108363/ https://www.ncbi.nlm.nih.gov/pubmed/35586568 http://dx.doi.org/10.3389/fgene.2022.866005 |
Ejemplares similares
-
Molecular Subtyping of Cancer Based on Robust Graph Neural Network and Multi-Omics Data Integration
por: Yin, Chaoyi, et al.
Publicado: (2022) -
Distinguishing Glioblastoma Subtypes by Methylation Signatures
por: Zhang, Yu-Hang, et al.
Publicado: (2020) -
KISL: knowledge-injected semi-supervised learning for biological co-expression network modules
por: Xiao, Gangyi, et al.
Publicado: (2023) -
Identifying the Signatures and Rules of Circulating Extracellular MicroRNA for Distinguishing Cancer Subtypes
por: Yuan, Fei, et al.
Publicado: (2021) -
Interpretable Machine Learning Reveals Dissimilarities Between Subtypes of Autism Spectrum Disorder
por: Garbulowski, Mateusz, et al.
Publicado: (2021)