Cargando…
Reinforcement learning and Bayesian inference provide complementary models for the unique advantage of adolescents in stochastic reversal
During adolescence, youth venture out, explore the wider world, and are challenged to learn how to navigate novel and uncertain environments. We investigated how performance changes across adolescent development in a stochastic, volatile reversal-learning task that uniquely taxes the balance of pers...
Autores principales: | Eckstein, Maria K., Master, Sarah L., Dahl, Ronald E., Wilbrecht, Linda, Collins, Anne G.E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9108470/ https://www.ncbi.nlm.nih.gov/pubmed/35537273 http://dx.doi.org/10.1016/j.dcn.2022.101106 |
Ejemplares similares
-
Modeling changes in probabilistic reinforcement learning during adolescence
por: Xia, Liyu, et al.
Publicado: (2021) -
Bayesian inference for stochastic processes
por: Broemeling, Lyle D
Publicado: (2017) -
Distentangling the systems contributing to changes in learning during adolescence
por: Master, Sarah L., et al.
Publicado: (2019) -
The interpretation of computational model parameters depends on the context
por: Eckstein, Maria Katharina, et al.
Publicado: (2022) -
Bayesian Estimation and Inference Using Stochastic Electronics
por: Thakur, Chetan Singh, et al.
Publicado: (2016)