Cargando…
Mg-based materials diminish tumor spreading and cancer metastases
Cancer metastases are the most common causes of cancer-related deaths. The formation of secondary tumors at different sites in the human body can impair multiple organ function and dramatically decrease the survival of the patients. In this stage, it is difficulty to treat tumor growth and spreading...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
KeAi Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9108521/ https://www.ncbi.nlm.nih.gov/pubmed/35600975 http://dx.doi.org/10.1016/j.bioactmat.2022.05.002 |
_version_ | 1784708723364593664 |
---|---|
author | Globig, Philipp Madurawala, Roshani Willumeit-Römer, Regine Martini, Fernanda Mazzoni, Elisa Luthringer-Feyerabend, Bérengère J.C. |
author_facet | Globig, Philipp Madurawala, Roshani Willumeit-Römer, Regine Martini, Fernanda Mazzoni, Elisa Luthringer-Feyerabend, Bérengère J.C. |
author_sort | Globig, Philipp |
collection | PubMed |
description | Cancer metastases are the most common causes of cancer-related deaths. The formation of secondary tumors at different sites in the human body can impair multiple organ function and dramatically decrease the survival of the patients. In this stage, it is difficulty to treat tumor growth and spreading due to arising therapy resistances. Therefore, it is important to prevent cancer metastases and to increase subsequent cancer therapy success. Cancer metastases are conventionally treated with radiation or chemotherapy. However, these treatments elicit lots of side effects, wherefore novel local treatment approaches are currently discussed. Recent studies already showed anticancer activity of specially designed degradable magnesium (Mg) alloys by reducing the cancer cell proliferation. In this work, we investigated the impact of these Mg-based materials on different steps of the metastatic cascade including cancer cell migration, invasion, and cancer-induced angiogenesis. Both, Mg and Mg–6Ag reduced cell migration and invasion of osteosarcoma cells in coculture with fibroblasts. Furthermore, the Mg-based materials used in this study diminished the cancer-induced angiogenesis. Endothelial cells incubated with conditioned media obtained from these Mg and Mg–6Ag showed a reduced cell layer permeability, a reduced proliferation and inhibited cell migration. The tube formation as a last step of angiogenesis was stimulated with the presence of Mg under normoxia and diminished under hypoxia. |
format | Online Article Text |
id | pubmed-9108521 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | KeAi Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-91085212022-05-20 Mg-based materials diminish tumor spreading and cancer metastases Globig, Philipp Madurawala, Roshani Willumeit-Römer, Regine Martini, Fernanda Mazzoni, Elisa Luthringer-Feyerabend, Bérengère J.C. Bioact Mater Article Cancer metastases are the most common causes of cancer-related deaths. The formation of secondary tumors at different sites in the human body can impair multiple organ function and dramatically decrease the survival of the patients. In this stage, it is difficulty to treat tumor growth and spreading due to arising therapy resistances. Therefore, it is important to prevent cancer metastases and to increase subsequent cancer therapy success. Cancer metastases are conventionally treated with radiation or chemotherapy. However, these treatments elicit lots of side effects, wherefore novel local treatment approaches are currently discussed. Recent studies already showed anticancer activity of specially designed degradable magnesium (Mg) alloys by reducing the cancer cell proliferation. In this work, we investigated the impact of these Mg-based materials on different steps of the metastatic cascade including cancer cell migration, invasion, and cancer-induced angiogenesis. Both, Mg and Mg–6Ag reduced cell migration and invasion of osteosarcoma cells in coculture with fibroblasts. Furthermore, the Mg-based materials used in this study diminished the cancer-induced angiogenesis. Endothelial cells incubated with conditioned media obtained from these Mg and Mg–6Ag showed a reduced cell layer permeability, a reduced proliferation and inhibited cell migration. The tube formation as a last step of angiogenesis was stimulated with the presence of Mg under normoxia and diminished under hypoxia. KeAi Publishing 2022-05-10 /pmc/articles/PMC9108521/ /pubmed/35600975 http://dx.doi.org/10.1016/j.bioactmat.2022.05.002 Text en © 2022 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Globig, Philipp Madurawala, Roshani Willumeit-Römer, Regine Martini, Fernanda Mazzoni, Elisa Luthringer-Feyerabend, Bérengère J.C. Mg-based materials diminish tumor spreading and cancer metastases |
title | Mg-based materials diminish tumor spreading and cancer metastases |
title_full | Mg-based materials diminish tumor spreading and cancer metastases |
title_fullStr | Mg-based materials diminish tumor spreading and cancer metastases |
title_full_unstemmed | Mg-based materials diminish tumor spreading and cancer metastases |
title_short | Mg-based materials diminish tumor spreading and cancer metastases |
title_sort | mg-based materials diminish tumor spreading and cancer metastases |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9108521/ https://www.ncbi.nlm.nih.gov/pubmed/35600975 http://dx.doi.org/10.1016/j.bioactmat.2022.05.002 |
work_keys_str_mv | AT globigphilipp mgbasedmaterialsdiminishtumorspreadingandcancermetastases AT madurawalaroshani mgbasedmaterialsdiminishtumorspreadingandcancermetastases AT willumeitromerregine mgbasedmaterialsdiminishtumorspreadingandcancermetastases AT martinifernanda mgbasedmaterialsdiminishtumorspreadingandcancermetastases AT mazzonielisa mgbasedmaterialsdiminishtumorspreadingandcancermetastases AT luthringerfeyerabendberengerejc mgbasedmaterialsdiminishtumorspreadingandcancermetastases |