Cargando…
Lidocaine inhibited migration of NSCLCA549 cells via the CXCR4 regulation
BACKGROUND: Lidocaine is a local anesthetic that wildly used in surgical treatment and postoperative medical care for lung cancers. We hypothesized that lidocaine at clinical plasma concentration can inhibit CXCL12/CXCR4 axis-regulated cytoskeletal remodeling thereby reduce the migration of Non-smal...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
IOS Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9108592/ https://www.ncbi.nlm.nih.gov/pubmed/34334384 http://dx.doi.org/10.3233/CBM-210249 |
Sumario: | BACKGROUND: Lidocaine is a local anesthetic that wildly used in surgical treatment and postoperative medical care for lung cancers. We hypothesized that lidocaine at clinical plasma concentration can inhibit CXCL12/CXCR4 axis-regulated cytoskeletal remodeling thereby reduce the migration of Non-small-cell lung cancers (NSCLC) cells. METHODS: We determined the effect of lidocaine at clinical plasma concentration on CXCL12-induced cell viability, apoptosis, cell death, monolayer cell wound healing rate, individual cell migration indicators, expression of CXCR4, CD44, and ICAM-1, intracellular Ca [Formula: see text] level, and filamentous actin level alteration of NSCLC cells A549 and CXCR4-knocked down A549 cells using CCK-8, Bcl-2 ELISA, Cell death ELISA, wound healing assay, chemotaxis assay, western blotting, QPCR, Fura-2-based intracellular Ca [Formula: see text] assay, and Fluorescein Phalloidin staining respectively. RESULTS: Lidocaine did not affect cell viability, apoptosis, and cell death but inhibited CXCL12-induced migration, intracellular Ca [Formula: see text] releasing, and filamentous actin increase. Lidocaine decreased expression of CXCR4, increased CD44, but had no effect on ICAM-1. CXCL12 induced the increase of CD44 and ICAM-1 but did not affect CD44 in the presence of lidocaine. The knockdown of CXCR4 eliminated all the effects of lidocaine. The overexpression of CXCR4 promoted migration but the migration was inhibited by lidocaine. CONCLUSION: Lidocaine at clinical plasma concentrations inhibited CXCL12-induced CXCR4 activation, thereby reduced the intracellular Ca [Formula: see text]-dependent cytoskeleton remodeling, resulting in slower migration of A549 cells. |
---|