Cargando…
scEFSC: Accurate single-cell RNA-seq data analysis via ensemble consensus clustering based on multiple feature selections
With the development of next-generation sequencing technologies, single-cell RNA sequencing (scRNA-seq) has become one indispensable tool to reveal the wide heterogeneity between cells. Clustering is a fundamental task in this analysis to disclose the transcriptomic profiles of single cells and is o...
Autores principales: | Bian, Chuang, Wang, Xubin, Su, Yanchi, Wang, Yunhe, Wong, Ka-chun, Li, Xiangtao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9108753/ https://www.ncbi.nlm.nih.gov/pubmed/35615016 http://dx.doi.org/10.1016/j.csbj.2022.04.023 |
Ejemplares similares
-
scBGEDA: deep single-cell clustering analysis via a dual denoising autoencoder with bipartite graph ensemble clustering
por: Wang, Yunhe, et al.
Publicado: (2023) -
SC3 - consensus clustering of single-cell RNA-Seq data
por: Kiselev, Vladimir Yu., et al.
Publicado: (2017) -
Topological identification and interpretation for single-cell gene regulation elucidation across multiple platforms using scMGCA
por: Yu, Zhuohan, et al.
Publicado: (2023) -
scShaper: an ensemble method for fast and accurate linear trajectory inference from single-cell RNA-seq data
por: Smolander, Johannes, et al.
Publicado: (2021) -
Clustering Deviation Index (CDI): a robust and accurate internal measure for evaluating scRNA-seq data clustering
por: Fang, Jiyuan, et al.
Publicado: (2022)