Cargando…

CT angiographic radiomics signature for risk stratification in anterior large vessel occlusion stroke

BACKGROUND AND PURPOSE: As “time is brain” in acute stroke triage, the need for automated prognostication tools continues to increase, particularly in rapidly expanding tele-stroke settings. We aimed to create an automated prognostication tool for anterior circulation large vessel occlusion (LVO) st...

Descripción completa

Detalles Bibliográficos
Autores principales: Avery, Emily W., Behland, Jonas, Mak, Adrian, Haider, Stefan P., Zeevi, Tal, Sanelli, Pina C., Filippi, Christopher G., Malhotra, Ajay, Matouk, Charles C., Griessenauer, Christoph J., Zand, Ramin, Hendrix, Philipp, Abedi, Vida, Falcone, Guido J., Petersen, Nils, Sansing, Lauren H., Sheth, Kevin N., Payabvash, Seyedmehdi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9108990/
https://www.ncbi.nlm.nih.gov/pubmed/35550243
http://dx.doi.org/10.1016/j.nicl.2022.103034
_version_ 1784708822734995456
author Avery, Emily W.
Behland, Jonas
Mak, Adrian
Haider, Stefan P.
Zeevi, Tal
Sanelli, Pina C.
Filippi, Christopher G.
Malhotra, Ajay
Matouk, Charles C.
Griessenauer, Christoph J.
Zand, Ramin
Hendrix, Philipp
Abedi, Vida
Falcone, Guido J.
Petersen, Nils
Sansing, Lauren H.
Sheth, Kevin N.
Payabvash, Seyedmehdi
author_facet Avery, Emily W.
Behland, Jonas
Mak, Adrian
Haider, Stefan P.
Zeevi, Tal
Sanelli, Pina C.
Filippi, Christopher G.
Malhotra, Ajay
Matouk, Charles C.
Griessenauer, Christoph J.
Zand, Ramin
Hendrix, Philipp
Abedi, Vida
Falcone, Guido J.
Petersen, Nils
Sansing, Lauren H.
Sheth, Kevin N.
Payabvash, Seyedmehdi
author_sort Avery, Emily W.
collection PubMed
description BACKGROUND AND PURPOSE: As “time is brain” in acute stroke triage, the need for automated prognostication tools continues to increase, particularly in rapidly expanding tele-stroke settings. We aimed to create an automated prognostication tool for anterior circulation large vessel occlusion (LVO) stroke based on admission CTA radiomics. METHODS: We automatically extracted 1116 radiomics features from the anterior circulation territory on admission CTAs of 829 acute LVO stroke patients who underwent mechanical thrombectomy in two academic centers. We trained, optimized, validated, and compared different machine-learning models to predict favorable outcome (modified Rankin Scale ≤ 2) at discharge and 3-month follow-up using four different input sets: “Radiomics”, “Radiomics + Treatment” (radiomics, post-thrombectomy reperfusion grade, and intravenous thrombolysis), “Clinical + Treatment” (baseline clinical variables and treatment), and “Combined” (radiomics, treatment, and baseline clinical variables). RESULTS: For discharge outcome prediction, models were optimized/trained on n = 494 and tested on an independent cohort of n = 100 patients from Yale. Receiver operating characteristic analysis of the independent cohort showed no significant difference between best-performing Combined input models (area under the curve, AUC = 0.77) versus Radiomics + Treatment (AUC = 0.78, p = 0.78), Radiomics (AUC = 0.78, p = 0.55), or Clinical + Treatment (AUC = 0.77, p = 0.87) models. For 3-month outcome prediction, models were optimized/trained on n = 373 and tested on an independent cohort from Yale (n = 72), and an external cohort from Geisinger Medical Center (n = 232). In the independent cohort, there was no significant difference between Combined input models (AUC = 0.76) versus Radiomics + Treatment (AUC = 0.72, p = 0.39), Radiomics (AUC = 0.72, p = 0.39), or Clinical + Treatment (AUC = 76, p = 0.90) models; however, in the external cohort, the Combined model (AUC = 0.74) outperformed Radiomics + Treatment (AUC = 0.66, p < 0.001) and Radiomics (AUC = 0.68, p = 0.005) models for 3-month prediction. CONCLUSION: Machine-learning signatures of admission CTA radiomics can provide prognostic information in acute LVO stroke candidates for mechanical thrombectomy. Such objective and time-sensitive risk stratification can guide treatment decisions and facilitate tele-stroke assessment of patients. Particularly in the absence of reliable clinical information at the time of admission, models solely using radiomics features can provide a useful prognostication tool.
format Online
Article
Text
id pubmed-9108990
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-91089902022-05-17 CT angiographic radiomics signature for risk stratification in anterior large vessel occlusion stroke Avery, Emily W. Behland, Jonas Mak, Adrian Haider, Stefan P. Zeevi, Tal Sanelli, Pina C. Filippi, Christopher G. Malhotra, Ajay Matouk, Charles C. Griessenauer, Christoph J. Zand, Ramin Hendrix, Philipp Abedi, Vida Falcone, Guido J. Petersen, Nils Sansing, Lauren H. Sheth, Kevin N. Payabvash, Seyedmehdi Neuroimage Clin Regular Article BACKGROUND AND PURPOSE: As “time is brain” in acute stroke triage, the need for automated prognostication tools continues to increase, particularly in rapidly expanding tele-stroke settings. We aimed to create an automated prognostication tool for anterior circulation large vessel occlusion (LVO) stroke based on admission CTA radiomics. METHODS: We automatically extracted 1116 radiomics features from the anterior circulation territory on admission CTAs of 829 acute LVO stroke patients who underwent mechanical thrombectomy in two academic centers. We trained, optimized, validated, and compared different machine-learning models to predict favorable outcome (modified Rankin Scale ≤ 2) at discharge and 3-month follow-up using four different input sets: “Radiomics”, “Radiomics + Treatment” (radiomics, post-thrombectomy reperfusion grade, and intravenous thrombolysis), “Clinical + Treatment” (baseline clinical variables and treatment), and “Combined” (radiomics, treatment, and baseline clinical variables). RESULTS: For discharge outcome prediction, models were optimized/trained on n = 494 and tested on an independent cohort of n = 100 patients from Yale. Receiver operating characteristic analysis of the independent cohort showed no significant difference between best-performing Combined input models (area under the curve, AUC = 0.77) versus Radiomics + Treatment (AUC = 0.78, p = 0.78), Radiomics (AUC = 0.78, p = 0.55), or Clinical + Treatment (AUC = 0.77, p = 0.87) models. For 3-month outcome prediction, models were optimized/trained on n = 373 and tested on an independent cohort from Yale (n = 72), and an external cohort from Geisinger Medical Center (n = 232). In the independent cohort, there was no significant difference between Combined input models (AUC = 0.76) versus Radiomics + Treatment (AUC = 0.72, p = 0.39), Radiomics (AUC = 0.72, p = 0.39), or Clinical + Treatment (AUC = 76, p = 0.90) models; however, in the external cohort, the Combined model (AUC = 0.74) outperformed Radiomics + Treatment (AUC = 0.66, p < 0.001) and Radiomics (AUC = 0.68, p = 0.005) models for 3-month prediction. CONCLUSION: Machine-learning signatures of admission CTA radiomics can provide prognostic information in acute LVO stroke candidates for mechanical thrombectomy. Such objective and time-sensitive risk stratification can guide treatment decisions and facilitate tele-stroke assessment of patients. Particularly in the absence of reliable clinical information at the time of admission, models solely using radiomics features can provide a useful prognostication tool. Elsevier 2022-05-07 /pmc/articles/PMC9108990/ /pubmed/35550243 http://dx.doi.org/10.1016/j.nicl.2022.103034 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Regular Article
Avery, Emily W.
Behland, Jonas
Mak, Adrian
Haider, Stefan P.
Zeevi, Tal
Sanelli, Pina C.
Filippi, Christopher G.
Malhotra, Ajay
Matouk, Charles C.
Griessenauer, Christoph J.
Zand, Ramin
Hendrix, Philipp
Abedi, Vida
Falcone, Guido J.
Petersen, Nils
Sansing, Lauren H.
Sheth, Kevin N.
Payabvash, Seyedmehdi
CT angiographic radiomics signature for risk stratification in anterior large vessel occlusion stroke
title CT angiographic radiomics signature for risk stratification in anterior large vessel occlusion stroke
title_full CT angiographic radiomics signature for risk stratification in anterior large vessel occlusion stroke
title_fullStr CT angiographic radiomics signature for risk stratification in anterior large vessel occlusion stroke
title_full_unstemmed CT angiographic radiomics signature for risk stratification in anterior large vessel occlusion stroke
title_short CT angiographic radiomics signature for risk stratification in anterior large vessel occlusion stroke
title_sort ct angiographic radiomics signature for risk stratification in anterior large vessel occlusion stroke
topic Regular Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9108990/
https://www.ncbi.nlm.nih.gov/pubmed/35550243
http://dx.doi.org/10.1016/j.nicl.2022.103034
work_keys_str_mv AT averyemilyw ctangiographicradiomicssignatureforriskstratificationinanteriorlargevesselocclusionstroke
AT behlandjonas ctangiographicradiomicssignatureforriskstratificationinanteriorlargevesselocclusionstroke
AT makadrian ctangiographicradiomicssignatureforriskstratificationinanteriorlargevesselocclusionstroke
AT haiderstefanp ctangiographicradiomicssignatureforriskstratificationinanteriorlargevesselocclusionstroke
AT zeevital ctangiographicradiomicssignatureforriskstratificationinanteriorlargevesselocclusionstroke
AT sanellipinac ctangiographicradiomicssignatureforriskstratificationinanteriorlargevesselocclusionstroke
AT filippichristopherg ctangiographicradiomicssignatureforriskstratificationinanteriorlargevesselocclusionstroke
AT malhotraajay ctangiographicradiomicssignatureforriskstratificationinanteriorlargevesselocclusionstroke
AT matoukcharlesc ctangiographicradiomicssignatureforriskstratificationinanteriorlargevesselocclusionstroke
AT griessenauerchristophj ctangiographicradiomicssignatureforriskstratificationinanteriorlargevesselocclusionstroke
AT zandramin ctangiographicradiomicssignatureforriskstratificationinanteriorlargevesselocclusionstroke
AT hendrixphilipp ctangiographicradiomicssignatureforriskstratificationinanteriorlargevesselocclusionstroke
AT abedivida ctangiographicradiomicssignatureforriskstratificationinanteriorlargevesselocclusionstroke
AT falconeguidoj ctangiographicradiomicssignatureforriskstratificationinanteriorlargevesselocclusionstroke
AT petersennils ctangiographicradiomicssignatureforriskstratificationinanteriorlargevesselocclusionstroke
AT sansinglaurenh ctangiographicradiomicssignatureforriskstratificationinanteriorlargevesselocclusionstroke
AT shethkevinn ctangiographicradiomicssignatureforriskstratificationinanteriorlargevesselocclusionstroke
AT payabvashseyedmehdi ctangiographicradiomicssignatureforriskstratificationinanteriorlargevesselocclusionstroke