Cargando…

Large-scale engineering of hiPSC-derived nephron sheets and cryopreservation of their progenitors

BACKGROUND: The generation of human induced pluripotent stem cells (hiPSCs) has opened a world of opportunities for stem cell-based therapies in regenerative medicine. Currently, several human kidney organoid protocols are available that generate organoids containing kidney structures. However, thes...

Descripción completa

Detalles Bibliográficos
Autores principales: Wiersma, Loes E., Avramut, M. Cristina, Lievers, Ellen, Rabelink, Ton J., van den Berg, Cathelijne W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9109372/
https://www.ncbi.nlm.nih.gov/pubmed/35578313
http://dx.doi.org/10.1186/s13287-022-02881-5
Descripción
Sumario:BACKGROUND: The generation of human induced pluripotent stem cells (hiPSCs) has opened a world of opportunities for stem cell-based therapies in regenerative medicine. Currently, several human kidney organoid protocols are available that generate organoids containing kidney structures. However, these kidney organoids are relatively small ranging up to 0.13 cm(2) and therefore contain a small number of nephrons compared to an adult kidney, thus defying the exploration of future use for therapy. METHOD: We have developed a scalable, easily accessible, and reproducible protocol to increase the size of the organoid up to a nephron sheet of 2.5 cm(2) up to a maximum of 12.6 cm(2) containing a magnitude of nephrons. RESULTS: Confocal microscopy showed that the subunits of the nephrons remain evenly distributed throughout the entire sheet and that these tissue sheets can attain ~ 30,000–40,000 glomerular structures. Upon transplantation in immunodeficient mice, such nephron sheets became vascularized and matured. They also show reuptake of injected low-molecular mass dextran molecules in the tubular structures, indicative of glomerular filtration. Furthermore, we developed a protocol for the cryopreservation of intermediate mesoderm cells during the differentiation and demonstrate that these cells can be successfully thawed and recovered to create such tissue sheets. CONCLUSION: The scalability of the procedures, and the ability to cryopreserve the cells during differentiation are important steps forward in the translation of these differentiation protocols to future clinical applications such as transplantable auxiliary kidney tissue. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13287-022-02881-5.