Cargando…
Machine learned daily life history classification using low frequency tracking data and automated modelling pipelines: application to North American waterfowl
BACKGROUND: Identifying animal behaviors, life history states, and movement patterns is a prerequisite for many animal behavior analyses and effective management of wildlife and habitats. Most approaches classify short-term movement patterns with high frequency location or accelerometry data. Howeve...
Autores principales: | Overton, Cory, Casazza, Michael, Bretz, Joseph, McDuie, Fiona, Matchett, Elliott, Mackell, Desmond, Lorenz, Austen, Mott, Andrea, Herzog, Mark, Ackerman, Josh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9109391/ https://www.ncbi.nlm.nih.gov/pubmed/35578372 http://dx.doi.org/10.1186/s40462-022-00324-7 |
Ejemplares similares
-
GPS tracking data reveals daily spatio-temporal movement patterns of waterfowl
por: McDuie, Fiona, et al.
Publicado: (2019) -
Migration stopover ecology of Cinnamon Teal in western North America
por: Mackell, Desmond A., et al.
Publicado: (2021) -
Pathways for avian influenza virus spread: GPS reveals wild waterfowl in commercial livestock facilities and connectivity with the natural wetland landscape
por: McDuie, Fiona, et al.
Publicado: (2022) -
Megafires and thick smoke portend big problems for migratory birds
por: Overton, Cory T., et al.
Publicado: (2021) -
Changes in waterfowl migration phenologies in central North America: Implications for future waterfowl conservation
por: Andersson, Kent, et al.
Publicado: (2022)