Cargando…
Can Machine Learning Accurately Predict Postoperative Compensation for the Uninstrumented Thoracic Spine and Pelvis After Fusion From the Lower Thoracic Spine to the Sacrum?
STUDY DESIGN: Consecutively collected cases. OBJECTIVE: To determine if a machine-learning (ML) program can accurately predict the postoperative thoracic kyphosis through the uninstrumented thoracic spine and pelvic compensation in patients who undergo fusion from the lower thoracic spine (T10 or T1...
Autores principales: | Lee, Nathan J., Sardar, Zeeshan M., Boddapati, Venkat, Mathew, Justin, Cerpa, Meghan, Leung, Eric, Lombardi, Joseph, Lenke, Lawrence G., Lehman, Ronald A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9109562/ https://www.ncbi.nlm.nih.gov/pubmed/33030054 http://dx.doi.org/10.1177/2192568220956978 |
Ejemplares similares
-
Artificial Learning and Machine Learning Applications in Spine Surgery: A Systematic Review
por: Lopez, Cesar D., et al.
Publicado: (2022) -
Chondrosarcoma of the Mobile Spine and Sacrum
por: Stuckey, Ryan M., et al.
Publicado: (2011) -
Effect of Direct Vertebral Rotation on the Uninstrumented Lumbar Curve in Thoracic Adolescent Idiopathic Scoliosis
por: Kim, Sung-Soo, et al.
Publicado: (2017) -
Respiratory Compromise After Anterior Cervical Spine Surgery:
Incidence, Subsequent Complications, and Independent Predictors
por: Boddapati, Venkat, et al.
Publicado: (2021) -
Lower thoracic spine extension mobility is associated with higher intensity of thoracic spine pain
por: Määttä, Juhani, et al.
Publicado: (2022)