Cargando…
Deriving Pulmonary Ventilation Images From Clinical 4D-CBCT Using a Deep Learning-Based Model
PURPOSE: The current algorithms for measuring ventilation images from 4D cone-beam computed tomography (CBCT) are affected by the accuracy of deformable image registration (DIR). This study proposes a new deep learning (DL) method that does not rely on DIR to derive ventilation images from 4D-CBCT (...
Autores principales: | Liu, Zhiqiang, Tian, Yuan, Miao, Junjie, Men, Kuo, Wang, Wenqing, Wang, Xin, Zhang, Tao, Bi, Nan, Dai, Jianrong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9109610/ https://www.ncbi.nlm.nih.gov/pubmed/35586492 http://dx.doi.org/10.3389/fonc.2022.889266 |
Ejemplares similares
-
MRI-Only Radiotherapy Planning for Nasopharyngeal Carcinoma Using Deep Learning
por: Ma, Xiangyu, et al.
Publicado: (2021) -
Deep Learning Improved Clinical Target Volume Contouring Quality and Efficiency for Postoperative Radiation Therapy in Non-small Cell Lung Cancer
por: Bi, Nan, et al.
Publicado: (2019) -
Evaluation of Automatic Segmentation Model With Dosimetric Metrics for Radiotherapy of Esophageal Cancer
por: Zhu, Ji, et al.
Publicado: (2020) -
Combining distance and anatomical information for deep-learning based dose distribution predictions for nasopharyngeal cancer radiotherapy planning
por: Chen, Xinyuan, et al.
Publicado: (2023) -
Deep Deconvolutional Neural Network for Target Segmentation of Nasopharyngeal Cancer in Planning Computed Tomography Images
por: Men, Kuo, et al.
Publicado: (2017)