Cargando…
Comparative study of artificial neural network versus parametric method in COVID-19 data analysis
Since the previous two years, a new coronavirus (COVID-19) has found a major global problem. The speedy pathogen over the globe was followed by a shockingly large number of afflicted people and a gradual increase in the number of deaths. If the survival analysis of active individuals can be predicte...
Autores principales: | Shafiq, Anum, Batur Çolak, Andaç, Naz Sindhu, Tabassum, Ahmad Lone, Showkat, Alsubie, Abdelaziz, Jarad, Fahd |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Published by Elsevier B.V.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9110000/ https://www.ncbi.nlm.nih.gov/pubmed/35600673 http://dx.doi.org/10.1016/j.rinp.2022.105613 |
Ejemplares similares
-
Estimation of unsteady hydromagnetic Williamson fluid flow in a radiative surface through numerical and artificial neural network modeling
por: Shafiq, Anum, et al.
Publicado: (2021) -
A novel extended model with versatile shaped failure rate: Statistical inference with Covid -19 applications
por: Shafiq, Anum, et al.
Publicado: (2022) -
Statistical modeling for bioconvective tangent hyperbolic nanofluid towards stretching surface with zero mass flux condition
por: Shafiq, Anum, et al.
Publicado: (2021) -
Exponentiated transformation of Gumbel Type-II distribution for modeling COVID-19 data
por: Sindhu, Tabassum Naz, et al.
Publicado: (2021) -
A sensitivity study on carbon nanotubes significance in Darcy–Forchheimer flow towards a rotating disk by response surface methodology
por: Shafiq, Anum, et al.
Publicado: (2021)