Cargando…
Prediction of Response to Radiotherapy by Characterizing the Transcriptomic Features in Clinical Tumor Samples across 15 Cancer Types
PURPOSE: Radiotherapy (RT) is one of the major cancer treatments. However, the responses to RT vary among individual patients, partly due to the differences of the status of gene expression and mutation in tumors of patients. Identification of patients who will benefit from RT will improve the effic...
Autores principales: | Xu, Yu, Tang, Chao, Wu, Yan, Luo, Ling, Wang, Ying, Wu, Yongzhong, Shi, Xiaolong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9110128/ https://www.ncbi.nlm.nih.gov/pubmed/35586092 http://dx.doi.org/10.1155/2022/5443709 |
Ejemplares similares
-
Improving the prediction for the response to radiotherapy of clinical tumor samples by using combinatorial model of MicroRNA expression
por: Tang, Chao, et al.
Publicado: (2022) -
Sequence Fusion Algorithm of Tumor Gene Sequencing and Alignment Based on Machine Learning
por: Tang, Chao, et al.
Publicado: (2021) -
Transcriptomic Features of T Cell-Barren Tumors Are Conserved Across Diverse Tumor Types
por: Routh, Eric D., et al.
Publicado: (2020) -
Gross Tumor Volume Segmentation for Stage III NSCLC Radiotherapy
Using 3D ResSE-Unet
por: Yu, Xinhao, et al.
Publicado: (2022) -
Gene Position Index Mutation Detection Algorithm Based on Feedback Fast Learning Neural Network
por: Zuo, Zhike, et al.
Publicado: (2021)