Cargando…
ZeVigilante: Detecting Zero-Day Malware Using Machine Learning and Sandboxing Analysis Techniques
For the enormous growth and the hysterical impact of undocumented malicious software, otherwise known as Zero-Day malware, specialized practices were joined to implement systems capable of detecting these kinds of software to avert possible disastrous consequences. Owing to the nature of developed Z...
Autores principales: | Alhaidari, Fahd, Shaib, Nouran Abu, Alsafi, Maram, Alharbi, Haneen, Alawami, Majd, Aljindan, Reem, Rahman, Atta-ur, Zagrouba, Rachid |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9110140/ https://www.ncbi.nlm.nih.gov/pubmed/35586085 http://dx.doi.org/10.1155/2022/1615528 |
Ejemplares similares
-
El vigilante /
por: Montes, Felipe, 1961-
Publicado: (2001) -
Manual de capacitación de vigilantes : en empresas industriales, comerciales y de servicios /
por: Aguirre Martínez, Eduardo
Publicado: (1998) -
La prensa vigilante: una colección de estudios de casos.
Publicado: (1990) -
Zero-Day Malware Detection and Effective Malware Analysis Using Shapley Ensemble Boosting and Bagging Approach
por: Kumar, Rajesh, et al.
Publicado: (2022) -
AlphaZe∗∗: AlphaZero-like baselines for imperfect information games are surprisingly strong
por: Blüml, Jannis, et al.
Publicado: (2023)