Cargando…

A knowledge graph to interpret clinical proteomics data

Implementing precision medicine hinges on the integration of omics data, such as proteomics, into the clinical decision-making process, but the quantity and diversity of biomedical data, and the spread of clinically relevant knowledge across multiple biomedical databases and publications, pose a cha...

Descripción completa

Detalles Bibliográficos
Autores principales: Santos, Alberto, Colaço, Ana R., Nielsen, Annelaura B., Niu, Lili, Strauss, Maximilian, Geyer, Philipp E., Coscia, Fabian, Albrechtsen, Nicolai J. Wewer, Mundt, Filip, Jensen, Lars Juhl, Mann, Matthias
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group US 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9110295/
https://www.ncbi.nlm.nih.gov/pubmed/35102292
http://dx.doi.org/10.1038/s41587-021-01145-6
_version_ 1784709072279306240
author Santos, Alberto
Colaço, Ana R.
Nielsen, Annelaura B.
Niu, Lili
Strauss, Maximilian
Geyer, Philipp E.
Coscia, Fabian
Albrechtsen, Nicolai J. Wewer
Mundt, Filip
Jensen, Lars Juhl
Mann, Matthias
author_facet Santos, Alberto
Colaço, Ana R.
Nielsen, Annelaura B.
Niu, Lili
Strauss, Maximilian
Geyer, Philipp E.
Coscia, Fabian
Albrechtsen, Nicolai J. Wewer
Mundt, Filip
Jensen, Lars Juhl
Mann, Matthias
author_sort Santos, Alberto
collection PubMed
description Implementing precision medicine hinges on the integration of omics data, such as proteomics, into the clinical decision-making process, but the quantity and diversity of biomedical data, and the spread of clinically relevant knowledge across multiple biomedical databases and publications, pose a challenge to data integration. Here we present the Clinical Knowledge Graph (CKG), an open-source platform currently comprising close to 20 million nodes and 220 million relationships that represent relevant experimental data, public databases and literature. The graph structure provides a flexible data model that is easily extendable to new nodes and relationships as new databases become available. The CKG incorporates statistical and machine learning algorithms that accelerate the analysis and interpretation of typical proteomics workflows. Using a set of proof-of-concept biomarker studies, we show how the CKG might augment and enrich proteomics data and help inform clinical decision-making.
format Online
Article
Text
id pubmed-9110295
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group US
record_format MEDLINE/PubMed
spelling pubmed-91102952022-05-18 A knowledge graph to interpret clinical proteomics data Santos, Alberto Colaço, Ana R. Nielsen, Annelaura B. Niu, Lili Strauss, Maximilian Geyer, Philipp E. Coscia, Fabian Albrechtsen, Nicolai J. Wewer Mundt, Filip Jensen, Lars Juhl Mann, Matthias Nat Biotechnol Article Implementing precision medicine hinges on the integration of omics data, such as proteomics, into the clinical decision-making process, but the quantity and diversity of biomedical data, and the spread of clinically relevant knowledge across multiple biomedical databases and publications, pose a challenge to data integration. Here we present the Clinical Knowledge Graph (CKG), an open-source platform currently comprising close to 20 million nodes and 220 million relationships that represent relevant experimental data, public databases and literature. The graph structure provides a flexible data model that is easily extendable to new nodes and relationships as new databases become available. The CKG incorporates statistical and machine learning algorithms that accelerate the analysis and interpretation of typical proteomics workflows. Using a set of proof-of-concept biomarker studies, we show how the CKG might augment and enrich proteomics data and help inform clinical decision-making. Nature Publishing Group US 2022-01-31 2022 /pmc/articles/PMC9110295/ /pubmed/35102292 http://dx.doi.org/10.1038/s41587-021-01145-6 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Santos, Alberto
Colaço, Ana R.
Nielsen, Annelaura B.
Niu, Lili
Strauss, Maximilian
Geyer, Philipp E.
Coscia, Fabian
Albrechtsen, Nicolai J. Wewer
Mundt, Filip
Jensen, Lars Juhl
Mann, Matthias
A knowledge graph to interpret clinical proteomics data
title A knowledge graph to interpret clinical proteomics data
title_full A knowledge graph to interpret clinical proteomics data
title_fullStr A knowledge graph to interpret clinical proteomics data
title_full_unstemmed A knowledge graph to interpret clinical proteomics data
title_short A knowledge graph to interpret clinical proteomics data
title_sort knowledge graph to interpret clinical proteomics data
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9110295/
https://www.ncbi.nlm.nih.gov/pubmed/35102292
http://dx.doi.org/10.1038/s41587-021-01145-6
work_keys_str_mv AT santosalberto aknowledgegraphtointerpretclinicalproteomicsdata
AT colacoanar aknowledgegraphtointerpretclinicalproteomicsdata
AT nielsenannelaurab aknowledgegraphtointerpretclinicalproteomicsdata
AT niulili aknowledgegraphtointerpretclinicalproteomicsdata
AT straussmaximilian aknowledgegraphtointerpretclinicalproteomicsdata
AT geyerphilippe aknowledgegraphtointerpretclinicalproteomicsdata
AT cosciafabian aknowledgegraphtointerpretclinicalproteomicsdata
AT albrechtsennicolaijwewer aknowledgegraphtointerpretclinicalproteomicsdata
AT mundtfilip aknowledgegraphtointerpretclinicalproteomicsdata
AT jensenlarsjuhl aknowledgegraphtointerpretclinicalproteomicsdata
AT mannmatthias aknowledgegraphtointerpretclinicalproteomicsdata
AT santosalberto knowledgegraphtointerpretclinicalproteomicsdata
AT colacoanar knowledgegraphtointerpretclinicalproteomicsdata
AT nielsenannelaurab knowledgegraphtointerpretclinicalproteomicsdata
AT niulili knowledgegraphtointerpretclinicalproteomicsdata
AT straussmaximilian knowledgegraphtointerpretclinicalproteomicsdata
AT geyerphilippe knowledgegraphtointerpretclinicalproteomicsdata
AT cosciafabian knowledgegraphtointerpretclinicalproteomicsdata
AT albrechtsennicolaijwewer knowledgegraphtointerpretclinicalproteomicsdata
AT mundtfilip knowledgegraphtointerpretclinicalproteomicsdata
AT jensenlarsjuhl knowledgegraphtointerpretclinicalproteomicsdata
AT mannmatthias knowledgegraphtointerpretclinicalproteomicsdata