Cargando…
A knowledge graph to interpret clinical proteomics data
Implementing precision medicine hinges on the integration of omics data, such as proteomics, into the clinical decision-making process, but the quantity and diversity of biomedical data, and the spread of clinically relevant knowledge across multiple biomedical databases and publications, pose a cha...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9110295/ https://www.ncbi.nlm.nih.gov/pubmed/35102292 http://dx.doi.org/10.1038/s41587-021-01145-6 |
_version_ | 1784709072279306240 |
---|---|
author | Santos, Alberto Colaço, Ana R. Nielsen, Annelaura B. Niu, Lili Strauss, Maximilian Geyer, Philipp E. Coscia, Fabian Albrechtsen, Nicolai J. Wewer Mundt, Filip Jensen, Lars Juhl Mann, Matthias |
author_facet | Santos, Alberto Colaço, Ana R. Nielsen, Annelaura B. Niu, Lili Strauss, Maximilian Geyer, Philipp E. Coscia, Fabian Albrechtsen, Nicolai J. Wewer Mundt, Filip Jensen, Lars Juhl Mann, Matthias |
author_sort | Santos, Alberto |
collection | PubMed |
description | Implementing precision medicine hinges on the integration of omics data, such as proteomics, into the clinical decision-making process, but the quantity and diversity of biomedical data, and the spread of clinically relevant knowledge across multiple biomedical databases and publications, pose a challenge to data integration. Here we present the Clinical Knowledge Graph (CKG), an open-source platform currently comprising close to 20 million nodes and 220 million relationships that represent relevant experimental data, public databases and literature. The graph structure provides a flexible data model that is easily extendable to new nodes and relationships as new databases become available. The CKG incorporates statistical and machine learning algorithms that accelerate the analysis and interpretation of typical proteomics workflows. Using a set of proof-of-concept biomarker studies, we show how the CKG might augment and enrich proteomics data and help inform clinical decision-making. |
format | Online Article Text |
id | pubmed-9110295 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Nature Publishing Group US |
record_format | MEDLINE/PubMed |
spelling | pubmed-91102952022-05-18 A knowledge graph to interpret clinical proteomics data Santos, Alberto Colaço, Ana R. Nielsen, Annelaura B. Niu, Lili Strauss, Maximilian Geyer, Philipp E. Coscia, Fabian Albrechtsen, Nicolai J. Wewer Mundt, Filip Jensen, Lars Juhl Mann, Matthias Nat Biotechnol Article Implementing precision medicine hinges on the integration of omics data, such as proteomics, into the clinical decision-making process, but the quantity and diversity of biomedical data, and the spread of clinically relevant knowledge across multiple biomedical databases and publications, pose a challenge to data integration. Here we present the Clinical Knowledge Graph (CKG), an open-source platform currently comprising close to 20 million nodes and 220 million relationships that represent relevant experimental data, public databases and literature. The graph structure provides a flexible data model that is easily extendable to new nodes and relationships as new databases become available. The CKG incorporates statistical and machine learning algorithms that accelerate the analysis and interpretation of typical proteomics workflows. Using a set of proof-of-concept biomarker studies, we show how the CKG might augment and enrich proteomics data and help inform clinical decision-making. Nature Publishing Group US 2022-01-31 2022 /pmc/articles/PMC9110295/ /pubmed/35102292 http://dx.doi.org/10.1038/s41587-021-01145-6 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Santos, Alberto Colaço, Ana R. Nielsen, Annelaura B. Niu, Lili Strauss, Maximilian Geyer, Philipp E. Coscia, Fabian Albrechtsen, Nicolai J. Wewer Mundt, Filip Jensen, Lars Juhl Mann, Matthias A knowledge graph to interpret clinical proteomics data |
title | A knowledge graph to interpret clinical proteomics data |
title_full | A knowledge graph to interpret clinical proteomics data |
title_fullStr | A knowledge graph to interpret clinical proteomics data |
title_full_unstemmed | A knowledge graph to interpret clinical proteomics data |
title_short | A knowledge graph to interpret clinical proteomics data |
title_sort | knowledge graph to interpret clinical proteomics data |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9110295/ https://www.ncbi.nlm.nih.gov/pubmed/35102292 http://dx.doi.org/10.1038/s41587-021-01145-6 |
work_keys_str_mv | AT santosalberto aknowledgegraphtointerpretclinicalproteomicsdata AT colacoanar aknowledgegraphtointerpretclinicalproteomicsdata AT nielsenannelaurab aknowledgegraphtointerpretclinicalproteomicsdata AT niulili aknowledgegraphtointerpretclinicalproteomicsdata AT straussmaximilian aknowledgegraphtointerpretclinicalproteomicsdata AT geyerphilippe aknowledgegraphtointerpretclinicalproteomicsdata AT cosciafabian aknowledgegraphtointerpretclinicalproteomicsdata AT albrechtsennicolaijwewer aknowledgegraphtointerpretclinicalproteomicsdata AT mundtfilip aknowledgegraphtointerpretclinicalproteomicsdata AT jensenlarsjuhl aknowledgegraphtointerpretclinicalproteomicsdata AT mannmatthias aknowledgegraphtointerpretclinicalproteomicsdata AT santosalberto knowledgegraphtointerpretclinicalproteomicsdata AT colacoanar knowledgegraphtointerpretclinicalproteomicsdata AT nielsenannelaurab knowledgegraphtointerpretclinicalproteomicsdata AT niulili knowledgegraphtointerpretclinicalproteomicsdata AT straussmaximilian knowledgegraphtointerpretclinicalproteomicsdata AT geyerphilippe knowledgegraphtointerpretclinicalproteomicsdata AT cosciafabian knowledgegraphtointerpretclinicalproteomicsdata AT albrechtsennicolaijwewer knowledgegraphtointerpretclinicalproteomicsdata AT mundtfilip knowledgegraphtointerpretclinicalproteomicsdata AT jensenlarsjuhl knowledgegraphtointerpretclinicalproteomicsdata AT mannmatthias knowledgegraphtointerpretclinicalproteomicsdata |