Cargando…
Deep learning-based plane pose regression in obstetric ultrasound
PURPOSE: In obstetric ultrasound (US) scanning, the learner’s ability to mentally build a three-dimensional (3D) map of the fetus from a two-dimensional (2D) US image represents a major challenge in skill acquisition. We aim to build a US plane localisation system for 3D visualisation, training, and...
Autores principales: | Di Vece, Chiara, Dromey, Brian, Vasconcelos, Francisco, David, Anna L., Peebles, Donald, Stoyanov, Danail |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9110476/ https://www.ncbi.nlm.nih.gov/pubmed/35489005 http://dx.doi.org/10.1007/s11548-022-02609-z |
Ejemplares similares
-
A Systematic Review and Meta-analysis of the Use of High-Fidelity Simulation in Obstetric Ultrasound
por: Dromey, Brian P., et al.
Publicado: (2021) -
Dimensionless squared jerk: An objective differential to assess experienced and novice probe movement in obstetric ultrasound
por: Dromey, Brian P, et al.
Publicado: (2020) -
Spatial calibration of a 2D/3D ultrasound using a tracked needle
por: Vasconcelos, Francisco, et al.
Publicado: (2016) -
CAL-Tutor: A HoloLens 2 Application for Training in Obstetric Sonography and User Motion Data Recording
por: Birlo, Manuel, et al.
Publicado: (2022) -
Robust fetoscopic mosaicking from deep learned flow fields
por: Alabi, Oluwatosin, et al.
Publicado: (2022)