Cargando…

Glutamine as a Potential Noninvasive Biomarker for Human Embryo Selection

To determine whether glutamine consumption is associated with embryo quality and aneuploidy, a retrospective study was conducted in an in vitro fertilization center. Spent embryo culture media from patients undergoing assisted reproduction treatment and preimplantation genetic testing (PGT) were obt...

Descripción completa

Detalles Bibliográficos
Autores principales: Miao, Sui-Bing, Feng, Yan-Ru, Wang, Xiao-Dan, Lian, Kao-Qi, Meng, Fan-Yu, Song, Ge, Yuan, Jing-Chuan, Geng, Cai-Ping, Wu, Xiao-Hua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9110480/
https://www.ncbi.nlm.nih.gov/pubmed/35075614
http://dx.doi.org/10.1007/s43032-021-00812-y
Descripción
Sumario:To determine whether glutamine consumption is associated with embryo quality and aneuploidy, a retrospective study was conducted in an in vitro fertilization center. Spent embryo culture media from patients undergoing assisted reproduction treatment and preimplantation genetic testing (PGT) were obtained on day 3 of in vitro culture. Embryo quality was assessed for cell number and fragmentation rate. PGT for aneuploidy was performed using whole genome amplification and DNA sequencing. Glutamine levels in spent embryo culture media were analyzed by gas chromatography–mass spectrometry. The results demonstrated that glutamine was a primary contributor to the classification of the good-quality and poor-quality embryos based on the orthogonal partial least-squares discriminant analysis model. Glutamine consumption in the poor-quality embryos was significantly higher than that in the good-quality embryos (P < 0.05). A significant increase in glutamine consumption was observed from aneuploid embryos compared with that from euploid embryos (P < 0.01). The Pearson correlation coefficients between embryo quality and glutamine consumption, and between aneuploidy and glutamine consumption, were 0.430 and 0.757, respectively. The area under the ROC curve was 0.938 (95% CI: 0.902–0.975) for identifying aneuploidy. Animal experiments demonstrate that increased glutamine consumption may be a compensatory mechanism to mitigate oxidative stress. Our data suggest that glutamine consumption is associated with embryo quality and aneuploidy. Glutamine may serve as a molecular indicator for embryo assessment and aneuploidy testing.