Cargando…
Large scale simulation of labeled intraoperative scenes in unity
PURPOSE: The use of synthetic or simulated data has the potential to greatly improve the availability and volume of training data for image guided surgery and other medical applications, where access to real-life training data is limited. METHODS: By using the Unity game engine, complex intraoperati...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9110486/ https://www.ncbi.nlm.nih.gov/pubmed/35355211 http://dx.doi.org/10.1007/s11548-022-02598-z |
Sumario: | PURPOSE: The use of synthetic or simulated data has the potential to greatly improve the availability and volume of training data for image guided surgery and other medical applications, where access to real-life training data is limited. METHODS: By using the Unity game engine, complex intraoperative scenes can be simulated. The Unity Perception package allows for randomisation of paremeters within the scene, and automatic labelling, to make simulating large data sets a trivial operation. In this work, the approach has been prototyped for liver segmentation from laparoscopic video images. 50,000 simulated images were used to train a U-Net, without the need for any manual labelling. The use of simulated data was compared against a model trained with 950 manually labelled laparoscopic images. RESULTS: When evaluated on data from 10 separate patients, synthetic data outperformed real data in 4 out of 10 cases. Average DICE scores across the 10 cases were 0.59 (synthetic data), 0.64 (real data) and 0.75 (both synthetic and real data). CONCLUSION: Synthetic data generated using this method is able to make valid inferences on real data, with average performance slightly below models trained on real data. The use of the simulated data for pre-training boosts model performance, when compared with training on real data only. |
---|