Cargando…
Ranking with submodular functions on a budget
Submodular maximization has been the backbone of many important machine-learning problems, and has applications to viral marketing, diversification, sensor placement, and more. However, the study of maximizing submodular functions has mainly been restricted in the context of selecting a set of items...
Autores principales: | Zhang, Guangyi, Tatti, Nikolaj, Gionis, Aristides |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9110513/ https://www.ncbi.nlm.nih.gov/pubmed/35601821 http://dx.doi.org/10.1007/s10618-022-00833-4 |
Ejemplares similares
-
Submodular functions and optimization
por: Fujishige, Satoru
Publicado: (2005) -
Submodular functions and optimization
por: Fujishige, Satoru
Publicado: (1991) -
Deep Compressed Sensing for Learning Submodular Functions
por: Tsai, Yu-Chung, et al.
Publicado: (2020) -
Regularized impurity reduction: accurate decision trees with complexity guarantees
por: Zhang, Guangyi, et al.
Publicado: (2022) -
Learning with submodular functions: a convex optimization perspective
por: Bach, Francis
Publicado: (2013)