Cargando…

Ring-Over-Ring Deslipping From Imine-Bridged Heterorotaxanes

Ring-over-ring slippage and ring-through-ring penetration are important processes in the construction of ring-in-ring multiple interlocked architectures. We have successfully observed “ring-over-ring deslipping” on the rotaxane axle by exploiting the dynamic covalent nature of imine bonds in imine-b...

Descripción completa

Detalles Bibliográficos
Autores principales: Hoshino, Sayaka, Ono, Kosuke, Kawai, Hidetoshi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9110657/
https://www.ncbi.nlm.nih.gov/pubmed/35592307
http://dx.doi.org/10.3389/fchem.2022.885939
Descripción
Sumario:Ring-over-ring slippage and ring-through-ring penetration are important processes in the construction of ring-in-ring multiple interlocked architectures. We have successfully observed “ring-over-ring deslipping” on the rotaxane axle by exploiting the dynamic covalent nature of imine bonds in imine-bridged heterorotaxanes R1 and R2 with two macrocycles of different ring sizes on the axle. When the imine bridges of R1 were cleaved, a hydrolyzed hetero[4]rotaxane [4]R1′ was formed as an intermediate under dynamic equilibrium, and the larger 38-membered macrocycle M was deslipped over the 24-membered ring (24C8 or DB24C8) to dissociate into a [3]rotaxane [3]R3 and a macrocycle M. The time dependent NMR measurement and the determined thermodynamic parameters revealed that the rate-limiting step of the deslipping process was attributed to steric hindrance between two rings and reduced mobility of M due to proximity to the crown ether, which was bound to the anilinium on the axle molecule.