Cargando…
Machine Learning Methods for Predicting Long-Term Mortality in Patients After Cardiac Surgery
OBJECTIVE: This study aims to construct and validate several machine learning (ML) algorithms to predict long-term mortality and identify risk factors in unselected patients post-cardiac surgery. METHODS: The Medical Information Mart for Intensive Care (MIMIC-III) database was used to perform a retr...
Autores principales: | Yu, Yue, Peng, Chi, Zhang, Zhiyuan, Shen, Kejia, Zhang, Yufeng, Xiao, Jian, Xi, Wang, Wang, Pei, Rao, Jin, Jin, Zhichao, Wang, Zhinong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9110683/ https://www.ncbi.nlm.nih.gov/pubmed/35592400 http://dx.doi.org/10.3389/fcvm.2022.831390 |
Ejemplares similares
-
Machine Learning to Predict Long-Term Cardiac-Relative Prognosis in Patients With Extra-Cardiac Vascular Disease
por: Lin, Guisen, et al.
Publicado: (2021) -
Phenotyping cardiogenic shock that showed different clinical outcomes and responses to vasopressor use: a latent profile analysis from MIMIC-IV database
por: Yu, Yue, et al.
Publicado: (2023) -
Prediction of Short-Term Mortality With Renal Replacement Therapy in Patients With Cardiac Surgery-Associated Acute Kidney Injury
por: Han, Huiyong, et al.
Publicado: (2021) -
Postoperative anion gap associates with short- and long-term mortality after cardiac surgery: A large-scale cohort study
por: Li, Jiajing, et al.
Publicado: (2022) -
Machine Learning-Based Personalized Risk Prediction Model for Mortality of Patients Undergoing Mitral Valve Surgery: The PRIME Score
por: Zhou, Ning, et al.
Publicado: (2022)