Cargando…

Prediction of gestational age using urinary metabolites in term and preterm pregnancies

Assessment of gestational age (GA) is key to provide optimal care during pregnancy. However, its accurate determination remains challenging in low- and middle-income countries, where access to obstetric ultrasound is limited. Hence, there is an urgent need to develop clinical approaches that allow a...

Descripción completa

Detalles Bibliográficos
Autores principales: Contrepois, Kévin, Chen, Songjie, Ghaemi, Mohammad S., Wong, Ronald J., Jehan, Fyezah, Sazawal, Sunil, Baqui, Abdullah H., Stringer, Jeffrey S. A., Rahman, Anisur, Nisar, Muhammad I., Dhingra, Usha, Khanam, Rasheda, Ilyas, Muhammad, Dutta, Arup, Mehmood, Usma, Deb, Saikat, Hotwani, Aneeta, Ali, Said M., Rahman, Sayedur, Nizar, Ambreen, Ame, Shaali M., Muhammad, Sajid, Chauhan, Aishwarya, Khan, Waqasuddin, Raqib, Rubhana, Das, Sayan, Ahmed, Salahuddin, Hasan, Tarik, Khalid, Javairia, Juma, Mohammed H., Chowdhury, Nabidul H., Kabir, Furqan, Aftab, Fahad, Quaiyum, Abdul, Manu, Alexander, Yoshida, Sachiyo, Bahl, Rajiv, Pervin, Jesmin, Price, Joan T., Rahman, Monjur, Kasaro, Margaret P., Litch, James A., Musonda, Patrick, Vwalika, Bellington, Shaw, Gary, Stevenson, David K., Aghaeepour, Nima, Snyder, Michael P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9110694/
https://www.ncbi.nlm.nih.gov/pubmed/35577875
http://dx.doi.org/10.1038/s41598-022-11866-6
_version_ 1784709156802920448
author Contrepois, Kévin
Chen, Songjie
Ghaemi, Mohammad S.
Wong, Ronald J.
Jehan, Fyezah
Sazawal, Sunil
Baqui, Abdullah H.
Stringer, Jeffrey S. A.
Rahman, Anisur
Nisar, Muhammad I.
Dhingra, Usha
Khanam, Rasheda
Ilyas, Muhammad
Dutta, Arup
Mehmood, Usma
Deb, Saikat
Hotwani, Aneeta
Ali, Said M.
Rahman, Sayedur
Nizar, Ambreen
Ame, Shaali M.
Muhammad, Sajid
Chauhan, Aishwarya
Khan, Waqasuddin
Raqib, Rubhana
Das, Sayan
Ahmed, Salahuddin
Hasan, Tarik
Khalid, Javairia
Juma, Mohammed H.
Chowdhury, Nabidul H.
Kabir, Furqan
Aftab, Fahad
Quaiyum, Abdul
Manu, Alexander
Yoshida, Sachiyo
Bahl, Rajiv
Pervin, Jesmin
Price, Joan T.
Rahman, Monjur
Kasaro, Margaret P.
Litch, James A.
Musonda, Patrick
Vwalika, Bellington
Shaw, Gary
Stevenson, David K.
Aghaeepour, Nima
Snyder, Michael P.
author_facet Contrepois, Kévin
Chen, Songjie
Ghaemi, Mohammad S.
Wong, Ronald J.
Jehan, Fyezah
Sazawal, Sunil
Baqui, Abdullah H.
Stringer, Jeffrey S. A.
Rahman, Anisur
Nisar, Muhammad I.
Dhingra, Usha
Khanam, Rasheda
Ilyas, Muhammad
Dutta, Arup
Mehmood, Usma
Deb, Saikat
Hotwani, Aneeta
Ali, Said M.
Rahman, Sayedur
Nizar, Ambreen
Ame, Shaali M.
Muhammad, Sajid
Chauhan, Aishwarya
Khan, Waqasuddin
Raqib, Rubhana
Das, Sayan
Ahmed, Salahuddin
Hasan, Tarik
Khalid, Javairia
Juma, Mohammed H.
Chowdhury, Nabidul H.
Kabir, Furqan
Aftab, Fahad
Quaiyum, Abdul
Manu, Alexander
Yoshida, Sachiyo
Bahl, Rajiv
Pervin, Jesmin
Price, Joan T.
Rahman, Monjur
Kasaro, Margaret P.
Litch, James A.
Musonda, Patrick
Vwalika, Bellington
Shaw, Gary
Stevenson, David K.
Aghaeepour, Nima
Snyder, Michael P.
author_sort Contrepois, Kévin
collection PubMed
description Assessment of gestational age (GA) is key to provide optimal care during pregnancy. However, its accurate determination remains challenging in low- and middle-income countries, where access to obstetric ultrasound is limited. Hence, there is an urgent need to develop clinical approaches that allow accurate and inexpensive estimations of GA. We investigated the ability of urinary metabolites to predict GA at time of collection in a diverse multi-site cohort of healthy and pathological pregnancies (n = 99) using a broad-spectrum liquid chromatography coupled with mass spectrometry (LC–MS) platform. Our approach detected a myriad of steroid hormones and their derivatives including estrogens, progesterones, corticosteroids, and androgens which were associated with pregnancy progression. We developed a restricted model that predicted GA with high accuracy using three metabolites (rho = 0.87, RMSE = 1.58 weeks) that was validated in an independent cohort (n = 20). The predictions were more robust in pregnancies that went to term in comparison to pregnancies that ended prematurely. Overall, we demonstrated the feasibility of implementing urine metabolomics analysis in large-scale multi-site studies and report a predictive model of GA with a potential clinical value.
format Online
Article
Text
id pubmed-9110694
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-91106942022-05-18 Prediction of gestational age using urinary metabolites in term and preterm pregnancies Contrepois, Kévin Chen, Songjie Ghaemi, Mohammad S. Wong, Ronald J. Jehan, Fyezah Sazawal, Sunil Baqui, Abdullah H. Stringer, Jeffrey S. A. Rahman, Anisur Nisar, Muhammad I. Dhingra, Usha Khanam, Rasheda Ilyas, Muhammad Dutta, Arup Mehmood, Usma Deb, Saikat Hotwani, Aneeta Ali, Said M. Rahman, Sayedur Nizar, Ambreen Ame, Shaali M. Muhammad, Sajid Chauhan, Aishwarya Khan, Waqasuddin Raqib, Rubhana Das, Sayan Ahmed, Salahuddin Hasan, Tarik Khalid, Javairia Juma, Mohammed H. Chowdhury, Nabidul H. Kabir, Furqan Aftab, Fahad Quaiyum, Abdul Manu, Alexander Yoshida, Sachiyo Bahl, Rajiv Pervin, Jesmin Price, Joan T. Rahman, Monjur Kasaro, Margaret P. Litch, James A. Musonda, Patrick Vwalika, Bellington Shaw, Gary Stevenson, David K. Aghaeepour, Nima Snyder, Michael P. Sci Rep Article Assessment of gestational age (GA) is key to provide optimal care during pregnancy. However, its accurate determination remains challenging in low- and middle-income countries, where access to obstetric ultrasound is limited. Hence, there is an urgent need to develop clinical approaches that allow accurate and inexpensive estimations of GA. We investigated the ability of urinary metabolites to predict GA at time of collection in a diverse multi-site cohort of healthy and pathological pregnancies (n = 99) using a broad-spectrum liquid chromatography coupled with mass spectrometry (LC–MS) platform. Our approach detected a myriad of steroid hormones and their derivatives including estrogens, progesterones, corticosteroids, and androgens which were associated with pregnancy progression. We developed a restricted model that predicted GA with high accuracy using three metabolites (rho = 0.87, RMSE = 1.58 weeks) that was validated in an independent cohort (n = 20). The predictions were more robust in pregnancies that went to term in comparison to pregnancies that ended prematurely. Overall, we demonstrated the feasibility of implementing urine metabolomics analysis in large-scale multi-site studies and report a predictive model of GA with a potential clinical value. Nature Publishing Group UK 2022-05-16 /pmc/articles/PMC9110694/ /pubmed/35577875 http://dx.doi.org/10.1038/s41598-022-11866-6 Text en © The Author(s) 2022, corrected publication 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Contrepois, Kévin
Chen, Songjie
Ghaemi, Mohammad S.
Wong, Ronald J.
Jehan, Fyezah
Sazawal, Sunil
Baqui, Abdullah H.
Stringer, Jeffrey S. A.
Rahman, Anisur
Nisar, Muhammad I.
Dhingra, Usha
Khanam, Rasheda
Ilyas, Muhammad
Dutta, Arup
Mehmood, Usma
Deb, Saikat
Hotwani, Aneeta
Ali, Said M.
Rahman, Sayedur
Nizar, Ambreen
Ame, Shaali M.
Muhammad, Sajid
Chauhan, Aishwarya
Khan, Waqasuddin
Raqib, Rubhana
Das, Sayan
Ahmed, Salahuddin
Hasan, Tarik
Khalid, Javairia
Juma, Mohammed H.
Chowdhury, Nabidul H.
Kabir, Furqan
Aftab, Fahad
Quaiyum, Abdul
Manu, Alexander
Yoshida, Sachiyo
Bahl, Rajiv
Pervin, Jesmin
Price, Joan T.
Rahman, Monjur
Kasaro, Margaret P.
Litch, James A.
Musonda, Patrick
Vwalika, Bellington
Shaw, Gary
Stevenson, David K.
Aghaeepour, Nima
Snyder, Michael P.
Prediction of gestational age using urinary metabolites in term and preterm pregnancies
title Prediction of gestational age using urinary metabolites in term and preterm pregnancies
title_full Prediction of gestational age using urinary metabolites in term and preterm pregnancies
title_fullStr Prediction of gestational age using urinary metabolites in term and preterm pregnancies
title_full_unstemmed Prediction of gestational age using urinary metabolites in term and preterm pregnancies
title_short Prediction of gestational age using urinary metabolites in term and preterm pregnancies
title_sort prediction of gestational age using urinary metabolites in term and preterm pregnancies
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9110694/
https://www.ncbi.nlm.nih.gov/pubmed/35577875
http://dx.doi.org/10.1038/s41598-022-11866-6
work_keys_str_mv AT contrepoiskevin predictionofgestationalageusingurinarymetabolitesintermandpretermpregnancies
AT chensongjie predictionofgestationalageusingurinarymetabolitesintermandpretermpregnancies
AT ghaemimohammads predictionofgestationalageusingurinarymetabolitesintermandpretermpregnancies
AT wongronaldj predictionofgestationalageusingurinarymetabolitesintermandpretermpregnancies
AT jehanfyezah predictionofgestationalageusingurinarymetabolitesintermandpretermpregnancies
AT sazawalsunil predictionofgestationalageusingurinarymetabolitesintermandpretermpregnancies
AT baquiabdullahh predictionofgestationalageusingurinarymetabolitesintermandpretermpregnancies
AT stringerjeffreysa predictionofgestationalageusingurinarymetabolitesintermandpretermpregnancies
AT rahmananisur predictionofgestationalageusingurinarymetabolitesintermandpretermpregnancies
AT nisarmuhammadi predictionofgestationalageusingurinarymetabolitesintermandpretermpregnancies
AT dhingrausha predictionofgestationalageusingurinarymetabolitesintermandpretermpregnancies
AT khanamrasheda predictionofgestationalageusingurinarymetabolitesintermandpretermpregnancies
AT ilyasmuhammad predictionofgestationalageusingurinarymetabolitesintermandpretermpregnancies
AT duttaarup predictionofgestationalageusingurinarymetabolitesintermandpretermpregnancies
AT mehmoodusma predictionofgestationalageusingurinarymetabolitesintermandpretermpregnancies
AT debsaikat predictionofgestationalageusingurinarymetabolitesintermandpretermpregnancies
AT hotwanianeeta predictionofgestationalageusingurinarymetabolitesintermandpretermpregnancies
AT alisaidm predictionofgestationalageusingurinarymetabolitesintermandpretermpregnancies
AT rahmansayedur predictionofgestationalageusingurinarymetabolitesintermandpretermpregnancies
AT nizarambreen predictionofgestationalageusingurinarymetabolitesintermandpretermpregnancies
AT ameshaalim predictionofgestationalageusingurinarymetabolitesintermandpretermpregnancies
AT muhammadsajid predictionofgestationalageusingurinarymetabolitesintermandpretermpregnancies
AT chauhanaishwarya predictionofgestationalageusingurinarymetabolitesintermandpretermpregnancies
AT khanwaqasuddin predictionofgestationalageusingurinarymetabolitesintermandpretermpregnancies
AT raqibrubhana predictionofgestationalageusingurinarymetabolitesintermandpretermpregnancies
AT dassayan predictionofgestationalageusingurinarymetabolitesintermandpretermpregnancies
AT ahmedsalahuddin predictionofgestationalageusingurinarymetabolitesintermandpretermpregnancies
AT hasantarik predictionofgestationalageusingurinarymetabolitesintermandpretermpregnancies
AT khalidjavairia predictionofgestationalageusingurinarymetabolitesintermandpretermpregnancies
AT jumamohammedh predictionofgestationalageusingurinarymetabolitesintermandpretermpregnancies
AT chowdhurynabidulh predictionofgestationalageusingurinarymetabolitesintermandpretermpregnancies
AT kabirfurqan predictionofgestationalageusingurinarymetabolitesintermandpretermpregnancies
AT aftabfahad predictionofgestationalageusingurinarymetabolitesintermandpretermpregnancies
AT quaiyumabdul predictionofgestationalageusingurinarymetabolitesintermandpretermpregnancies
AT manualexander predictionofgestationalageusingurinarymetabolitesintermandpretermpregnancies
AT yoshidasachiyo predictionofgestationalageusingurinarymetabolitesintermandpretermpregnancies
AT bahlrajiv predictionofgestationalageusingurinarymetabolitesintermandpretermpregnancies
AT pervinjesmin predictionofgestationalageusingurinarymetabolitesintermandpretermpregnancies
AT pricejoant predictionofgestationalageusingurinarymetabolitesintermandpretermpregnancies
AT rahmanmonjur predictionofgestationalageusingurinarymetabolitesintermandpretermpregnancies
AT kasaromargaretp predictionofgestationalageusingurinarymetabolitesintermandpretermpregnancies
AT litchjamesa predictionofgestationalageusingurinarymetabolitesintermandpretermpregnancies
AT musondapatrick predictionofgestationalageusingurinarymetabolitesintermandpretermpregnancies
AT vwalikabellington predictionofgestationalageusingurinarymetabolitesintermandpretermpregnancies
AT predictionofgestationalageusingurinarymetabolitesintermandpretermpregnancies
AT predictionofgestationalageusingurinarymetabolitesintermandpretermpregnancies
AT shawgary predictionofgestationalageusingurinarymetabolitesintermandpretermpregnancies
AT stevensondavidk predictionofgestationalageusingurinarymetabolitesintermandpretermpregnancies
AT aghaeepournima predictionofgestationalageusingurinarymetabolitesintermandpretermpregnancies
AT snydermichaelp predictionofgestationalageusingurinarymetabolitesintermandpretermpregnancies