Cargando…
Adversarial Robustness of Deep Reinforcement Learning Based Dynamic Recommender Systems
Adversarial attacks, e.g., adversarial perturbations of the input and adversarial samples, pose significant challenges to machine learning and deep learning techniques, including interactive recommendation systems. The latent embedding space of those techniques makes adversarial attacks challenging...
Autores principales: | Wang, Siyu, Cao, Yuanjiang, Chen, Xiaocong, Yao, Lina, Wang, Xianzhi, Sheng, Quan Z. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9110778/ https://www.ncbi.nlm.nih.gov/pubmed/35592793 http://dx.doi.org/10.3389/fdata.2022.822783 |
Ejemplares similares
-
Wasserstein Uncertainty Estimation for Adversarial Domain Matching
por: Wang, Rui, et al.
Publicado: (2022) -
Fair classification via domain adaptation: A dual adversarial learning approach
por: Liang, Yueqing, et al.
Publicado: (2023) -
Does subnetting and port hardening influence human adversarial decisions? An investigation via a HackIT tool
por: Uttrani, Shashank, et al.
Publicado: (2023) -
Editorial: User Modeling and Recommendations
por: Helic, Denis, et al.
Publicado: (2022) -
Knowledge Transfer via Pre-training for Recommendation: A Review and Prospect
por: Zeng, Zheni, et al.
Publicado: (2021)