Cargando…
Tracking the transmission dynamics of COVID‐19 with a time‐varying coefficient state‐space model
The spread of COVID‐19 has been greatly impacted by regulatory policies and behavior patterns that vary across counties, states, and countries. Population‐level dynamics of COVID‐19 can generally be described using a set of ordinary differential equations, but these deterministic equations are insuf...
Autores principales: | Keller, Joshua P., Zhou, Tianjian, Kaplan, Andee, Anderson, G. Brooke, Zhou, Wen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9111166/ https://www.ncbi.nlm.nih.gov/pubmed/35322455 http://dx.doi.org/10.1002/sim.9382 |
Ejemplares similares
-
Semiparametric Bayesian inference for the transmission dynamics of COVID-19 with a state-space model
por: Zhou, Tianjian, et al.
Publicado: (2020) -
Tracking the early depleting transmission dynamics of COVID-19 with a time-varying SIR model
por: Law, Kian Boon, et al.
Publicado: (2020) -
A new time-varying coefficient regression approach for analyzing infectious disease data
por: Liu, Juxin, et al.
Publicado: (2023) -
Time varying methods to infer extremes in dengue transmission dynamics
por: Lim, Jue Tao, et al.
Publicado: (2020) -
Varying-coefficient models for longitudinal processes with continuous-time informative dropout
por: Su, Li, et al.
Publicado: (2010)