Cargando…
Performance of a Machine Learning Algorithm Using Electronic Health Record Data to Predict Postoperative Complications and Report on a Mobile Platform
IMPORTANCE: Predicting postoperative complications has the potential to inform shared decisions regarding the appropriateness of surgical procedures, targeted risk-reduction strategies, and postoperative resource use. Realizing these advantages requires that accurate real-time predictions be integra...
Autores principales: | Ren, Yuanfang, Loftus, Tyler J., Datta, Shounak, Ruppert, Matthew M., Guan, Ziyuan, Miao, Shunshun, Shickel, Benjamin, Feng, Zheng, Giordano, Chris, Upchurch, Gilbert R., Rashidi, Parisa, Ozrazgat-Baslanti, Tezcan, Bihorac, Azra |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Medical Association
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9112066/ https://www.ncbi.nlm.nih.gov/pubmed/35576007 http://dx.doi.org/10.1001/jamanetworkopen.2022.11973 |
Ejemplares similares
-
Dynamic predictions of postoperative complications from explainable, uncertainty-aware, and multi-task deep neural networks
por: Shickel, Benjamin, et al.
Publicado: (2023) -
Physiologic signatures within six hours of hospitalization identify acute illness phenotypes
por: Ren, Yuanfang, et al.
Publicado: (2022) -
Machine Learning–Enabled Clinical Information Systems Using Fast Healthcare Interoperability Resources Data Standards: Scoping Review
por: Balch, Jeremy A, et al.
Publicado: (2023) -
Building an automated, machine learning-enabled platform for predicting post-operative complications
por: Balch, Jeremy A, et al.
Publicado: (2023) -
DeepSOFA: A Continuous Acuity Score for Critically Ill Patients using Clinically Interpretable Deep Learning
por: Shickel, Benjamin, et al.
Publicado: (2019)