Cargando…
Joint design and compression of convolutional neural networks as a Bi-level optimization problem
Over the last decade, deep neural networks have shown great success in the fields of machine learning and computer vision. Currently, the CNN (convolutional neural network) is one of the most successful networks, having been applied in a wide variety of application domains, including pattern recogni...
Autores principales: | Louati, Hassen, Bechikh, Slim, Louati, Ali, Aldaej, Abdulaziz, Said, Lamjed Ben |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer London
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9112272/ https://www.ncbi.nlm.nih.gov/pubmed/35599971 http://dx.doi.org/10.1007/s00521-022-07331-0 |
Ejemplares similares
-
Topology optimization search of deep convolution neural networks for CT and X-ray image classification
por: Louati, Hassen, et al.
Publicado: (2022) -
Embedding channel pruning within the CNN architecture design using a bi-level evolutionary approach
por: Louati, Hassen, et al.
Publicado: (2023) -
Recent advances in evolutionary multi-objective optimization
por: Bechikh, Slim, et al.
Publicado: (2017) -
An Optimized Convolutional Neural Network for the 3D Point-Cloud Compression
por: Luo, Guoliang, et al.
Publicado: (2023) -
Hyperspectral Image Classification with Optimized Compressed Synergic Deep Convolution Neural Network with Aquila Optimization
por: Subba Reddy, Tatireddy, et al.
Publicado: (2022)