Cargando…
Predicting acute kidney injury following open partial nephrectomy treatment using SAT-pruned explainable machine learning model
BACKGROUND: One of the most prevalent complications of Partial Nephrectomy (PN) is Acute Kidney Injury (AKI), which could have a negative impact on subsequent renal function and occurs in up to 24.3% of patients undergoing PN. The aim of this study was to predict the occurrence of AKI following PN u...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9112450/ https://www.ncbi.nlm.nih.gov/pubmed/35578278 http://dx.doi.org/10.1186/s12911-022-01877-8 |
Sumario: | BACKGROUND: One of the most prevalent complications of Partial Nephrectomy (PN) is Acute Kidney Injury (AKI), which could have a negative impact on subsequent renal function and occurs in up to 24.3% of patients undergoing PN. The aim of this study was to predict the occurrence of AKI following PN using preoperative parameters by applying machine learning algorithms. METHODS: We included all adult patients (n = 723) who underwent open PN in our department since 1995 and on whom we have data on the pre-operative renal function. We developed a random forest (RF) model with Boolean satisfaction-based pruned decision trees for binary classification (AKI or non-AKI). Hyper-parameter grid search was performed to optimize the model's performance. Fivefold cross-validation was applied to evaluate the model. We implemented a RF model with greedy feature selection to binary classify AKI and non-AKI cases based on pre-operative data. RESULTS: The best model obtained a 0.69 precision and 0.69 recall in classifying the AKI and non-AKI groups on average (k = 5). In addition, the model's probability to correctly classify a new prediction is 0.75. The proposed model is available as an online calculator. CONCLUSIONS: Our model predicts the occurrence of AKI following open PN with (75%) accuracy. We plan to externally validate this model and modify it to minimally-invasive PN. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12911-022-01877-8. |
---|