Cargando…
Glucagon-like peptide-1 attenuates diabetes-associated osteoporosis in ZDF rat, possibly through the RAGE pathway
BACKGROUND: Diabetes-associated osteoporosis are partly caused by accumulation of advanced glycation endproducts (AGEs). Glucagon-like peptide-1 (GLP-1) has been shown to regulate bone turnover. Here we explore whether GLP-1 receptor agonist (GLP1RA) can have a beneficial effect on bone in diabetes...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9112483/ https://www.ncbi.nlm.nih.gov/pubmed/35581617 http://dx.doi.org/10.1186/s12891-022-05396-5 |
Sumario: | BACKGROUND: Diabetes-associated osteoporosis are partly caused by accumulation of advanced glycation endproducts (AGEs). Glucagon-like peptide-1 (GLP-1) has been shown to regulate bone turnover. Here we explore whether GLP-1 receptor agonist (GLP1RA) can have a beneficial effect on bone in diabetes by ameliorating AGEs. METHODS: In the present study, we evaluated the effects of the GLP-1 receptor agonist liraglutide, insulin and dipeptidyl peptidase-4 inhibitor saxagliptin on Zucker diabetic fatty rats. Meanwhile, we observed the effect of GLP-1 on AGEs-mediated osteoblast proliferation and differentiation and the signal pathway. RESULTS: Liraglutide prevented the deterioration of trabecular microarchitecture and enhanced bone strength. Moreover, it increased serum Alpl, Ocn and P1NP levels and decreased serum CTX. In vitro we confirmed that GLP-1 could attenuate AGEs-mediated damage in osteogenic proliferation and differentiation. Besides, GLP-1 down-regulated the ROS that caused by AGEs and the mRNA and protein expression of Rage . CONCLUSIONS: Altogether, our findings suggest that GLP-1 receptor agonist promotes osteoblastogenesis and suppresses bone resorption on obese type 2 diabetic rats to a certain degree. The mechanism of these effects may be partly mediated by AGEs-RAGE-ROS pathway via the interaction with GLP-1 receptor. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12891-022-05396-5. |
---|